Defining polynomial
\(x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 30\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $58$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$: | $C_4$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 3, 4, \frac{17}{4}]$ |
Visible Swan slopes: | $[1,2,3,\frac{13}{4}]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}, \frac{43}{16}\rangle$ |
Rams: | $(1, 3, 7, 9)$ |
Jump set: | $[1, 2, 4, 8, 32]$ |
Roots of unity: | $2$ |
Intermediate fields
$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{-2\cdot 5})$, $\Q_{2}(\sqrt{2})$, 2.1.4.11a1.11, 2.1.4.8b1.6, 2.1.4.11a1.10, 2.1.8.24c1.62 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 30 \)
|
Ramification polygon
Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$,$1$,$1$ |
Indices of inseparability: | $[43, 34, 20, 8, 0]$ |
Invariants of the Galois closure
Galois degree: | $64$ |
Galois group: | $C_2^3.C_2^3$ (as 16T112) |
Inertia group: | $C_2^3:C_4$ (as 16T53) |
Wild inertia group: | $C_2^3:C_4$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
Galois Swan slopes: | $[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
Galois mean slope: | $3.8125$ |
Galois splitting model: | $x^{16} - 60 x^{12} + 918 x^{8} - 3996 x^{4} + 81$ |