Properties

Label 16.0.31334531494140625.1
Degree $16$
Signature $[0, 8]$
Discriminant $3.133\times 10^{16}$
Root discriminant \(10.74\)
Ramified primes $5,11329$
Class number $1$
Class group trivial
Galois group $S_4^2:C_4$ (as 16T1497)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 5*x^14 - 3*x^13 + 4*x^12 + 4*x^11 + 4*x^10 - x^9 + 21*x^8 - 13*x^7 + 26*x^6 - 7*x^5 + 14*x^4 + x^3 + 5*x^2 + x + 1)
 
gp: K = bnfinit(y^16 - 2*y^15 + 5*y^14 - 3*y^13 + 4*y^12 + 4*y^11 + 4*y^10 - y^9 + 21*y^8 - 13*y^7 + 26*y^6 - 7*y^5 + 14*y^4 + y^3 + 5*y^2 + y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 2*x^15 + 5*x^14 - 3*x^13 + 4*x^12 + 4*x^11 + 4*x^10 - x^9 + 21*x^8 - 13*x^7 + 26*x^6 - 7*x^5 + 14*x^4 + x^3 + 5*x^2 + x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 2*x^15 + 5*x^14 - 3*x^13 + 4*x^12 + 4*x^11 + 4*x^10 - x^9 + 21*x^8 - 13*x^7 + 26*x^6 - 7*x^5 + 14*x^4 + x^3 + 5*x^2 + x + 1)
 

\( x^{16} - 2 x^{15} + 5 x^{14} - 3 x^{13} + 4 x^{12} + 4 x^{11} + 4 x^{10} - x^{9} + 21 x^{8} - 13 x^{7} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(31334531494140625\) \(\medspace = 5^{12}\cdot 11329^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(10.74\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{3/4}11329^{1/2}\approx 355.89615140582174$
Ramified primes:   \(5\), \(11329\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{61}a^{15}-\frac{19}{61}a^{14}+\frac{23}{61}a^{13}-\frac{28}{61}a^{12}-\frac{8}{61}a^{11}+\frac{18}{61}a^{10}+\frac{3}{61}a^{9}+\frac{9}{61}a^{8}-\frac{10}{61}a^{7}-\frac{26}{61}a^{6}-\frac{20}{61}a^{5}+\frac{28}{61}a^{4}+\frac{26}{61}a^{3}-\frac{14}{61}a^{2}-\frac{1}{61}a+\frac{18}{61}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{77}{61} a^{15} - \frac{182}{61} a^{14} + \frac{368}{61} a^{13} - \frac{204}{61} a^{12} + \frac{55}{61} a^{11} + \frac{410}{61} a^{10} + \frac{109}{61} a^{9} - \frac{466}{61} a^{8} + \frac{1548}{61} a^{7} - \frac{1148}{61} a^{6} + \frac{1083}{61} a^{5} - \frac{101}{61} a^{4} + \frac{172}{61} a^{3} + \frac{142}{61} a^{2} + \frac{45}{61} a - \frac{17}{61} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{11}{61}a^{15}+\frac{35}{61}a^{14}-\frac{52}{61}a^{13}+\frac{241}{61}a^{12}-\frac{88}{61}a^{11}+\frac{198}{61}a^{10}+\frac{338}{61}a^{9}+\frac{160}{61}a^{8}+\frac{73}{61}a^{7}+\frac{995}{61}a^{6}-\frac{464}{61}a^{5}+\frac{918}{61}a^{4}-\frac{80}{61}a^{3}+\frac{334}{61}a^{2}+\frac{50}{61}a+\frac{76}{61}$, $\frac{13}{61}a^{15}-\frac{64}{61}a^{14}+\frac{177}{61}a^{13}-\frac{242}{61}a^{12}+\frac{201}{61}a^{11}+\frac{51}{61}a^{10}-\frac{144}{61}a^{9}-\frac{5}{61}a^{8}+\frac{602}{61}a^{7}-\frac{1009}{61}a^{6}+\frac{1082}{61}a^{5}-\frac{673}{61}a^{4}+\frac{277}{61}a^{3}-\frac{60}{61}a^{2}-\frac{13}{61}a-\frac{10}{61}$, $\frac{104}{61}a^{15}-\frac{207}{61}a^{14}+\frac{501}{61}a^{13}-\frac{228}{61}a^{12}+\frac{266}{61}a^{11}+\frac{591}{61}a^{10}+\frac{373}{61}a^{9}-\frac{223}{61}a^{8}+\frac{2254}{61}a^{7}-\frac{1179}{61}a^{6}+\frac{2007}{61}a^{5}-\frac{77}{61}a^{4}+\frac{752}{61}a^{3}+\frac{191}{61}a^{2}+\frac{262}{61}a-\frac{19}{61}$, $\frac{13}{61}a^{15}-\frac{64}{61}a^{14}+\frac{116}{61}a^{13}-\frac{181}{61}a^{12}+\frac{79}{61}a^{11}-\frac{10}{61}a^{10}-\frac{144}{61}a^{9}-\frac{127}{61}a^{8}+\frac{358}{61}a^{7}-\frac{765}{61}a^{6}+\frac{655}{61}a^{5}-\frac{490}{61}a^{4}+\frac{155}{61}a^{3}+\frac{1}{61}a^{2}-\frac{13}{61}a-\frac{10}{61}$, $\frac{46}{61}a^{15}-\frac{81}{61}a^{14}+\frac{204}{61}a^{13}-\frac{129}{61}a^{12}+\frac{181}{61}a^{11}+\frac{96}{61}a^{10}+\frac{138}{61}a^{9}-\frac{74}{61}a^{8}+\frac{699}{61}a^{7}-\frac{708}{61}a^{6}+\frac{1032}{61}a^{5}-\frac{603}{61}a^{4}+\frac{464}{61}a^{3}-\frac{95}{61}a^{2}+\frac{76}{61}a-\frac{26}{61}$, $\frac{57}{61}a^{15}-\frac{107}{61}a^{14}+\frac{213}{61}a^{13}-\frac{10}{61}a^{12}-\frac{29}{61}a^{11}+\frac{355}{61}a^{10}+\frac{232}{61}a^{9}-\frac{280}{61}a^{8}+\frac{1016}{61}a^{7}-\frac{262}{61}a^{6}+\frac{385}{61}a^{5}+\frac{376}{61}a^{4}+\frac{18}{61}a^{3}+\frac{239}{61}a^{2}+\frac{4}{61}a+\frac{50}{61}$, $\frac{60}{61}a^{15}-\frac{103}{61}a^{14}+\frac{221}{61}a^{13}+\frac{28}{61}a^{12}-\frac{53}{61}a^{11}+\frac{470}{61}a^{10}+\frac{302}{61}a^{9}-\frac{253}{61}a^{8}+\frac{1230}{61}a^{7}-\frac{35}{61}a^{6}+\frac{325}{61}a^{5}+\frac{826}{61}a^{4}+\frac{96}{61}a^{3}+\frac{380}{61}a^{2}+\frac{184}{61}a+\frac{104}{61}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 148.252775341 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 148.252775341 \cdot 1}{10\cdot\sqrt{31334531494140625}}\cr\approx \mathstrut & 0.203437109353 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 5*x^14 - 3*x^13 + 4*x^12 + 4*x^11 + 4*x^10 - x^9 + 21*x^8 - 13*x^7 + 26*x^6 - 7*x^5 + 14*x^4 + x^3 + 5*x^2 + x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 2*x^15 + 5*x^14 - 3*x^13 + 4*x^12 + 4*x^11 + 4*x^10 - x^9 + 21*x^8 - 13*x^7 + 26*x^6 - 7*x^5 + 14*x^4 + x^3 + 5*x^2 + x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 2*x^15 + 5*x^14 - 3*x^13 + 4*x^12 + 4*x^11 + 4*x^10 - x^9 + 21*x^8 - 13*x^7 + 26*x^6 - 7*x^5 + 14*x^4 + x^3 + 5*x^2 + x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 2*x^15 + 5*x^14 - 3*x^13 + 4*x^12 + 4*x^11 + 4*x^10 - x^9 + 21*x^8 - 13*x^7 + 26*x^6 - 7*x^5 + 14*x^4 + x^3 + 5*x^2 + x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_4^2:C_4$ (as 16T1497):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 2304
The 40 conjugacy class representatives for $S_4^2:C_4$
Character table for $S_4^2:C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.4.177015625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 12.4.10027050078125.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.12.0.1}{12} }{,}\,{\href{/padicField/2.4.0.1}{4} }$ ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ R ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.8.0.1}{8} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{4}$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{5}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }$ ${\href{/padicField/31.3.0.1}{3} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
\(11329\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $4$$2$$2$$2$