Defining polynomial
$( x^{4} + 4 x^{2} + 4 x + 2 )^{4} + 20 ( x^{4} + 4 x^{2} + 4 x + 2 )^{3} + \left(-320 x^{2} - 1120 x + 1510\right) ( x^{4} + 4 x^{2} + 4 x + 2 )^{2} + \left(10240 x^{3} - 22720 x - 19180\right) ( x^{4} + 4 x^{2} + 4 x + 2 ) + 61440 x^{3} + 143680 x^{2} + 94880 x + 45185$
|
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $16$ |
Ramification exponent $e$: | $4$ |
Residue field degree $f$: | $4$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{5}$ |
Root number: | $-1$ |
$\card{ \Gal(K/\Q_{ 5 }) }$: | $16$ |
This field is Galois and abelian over $\Q_{5}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{5}(\sqrt{2})$, $\Q_{5}(\sqrt{5})$, $\Q_{5}(\sqrt{5\cdot 2})$, 5.4.0.1, 5.4.2.1, 5.4.2.2, 5.4.3.1, 5.4.3.2, 5.4.3.3, 5.4.3.4, 5.8.4.1, 5.8.6.1, 5.8.6.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 5.4.0.1 $\cong \Q_{5}(t)$ where $t$ is a root of
\( x^{4} + 4 x^{2} + 4 x + 2 \)
|
Relative Eisenstein polynomial: |
\( x^{4} + 5 \)
$\ \in\Q_{5}(t)[x]$
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_4^2$ (as 16T4) |
Inertia group: | Intransitive group isomorphic to $C_4$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $4$ |
Tame degree: | $4$ |
Wild slopes: | None |
Galois mean slope: | $3/4$ |
Galois splitting model: | Not computed |