Properties

Label 5.16.12.1
Base \(\Q_{5}\)
Degree \(16\)
e \(4\)
f \(4\)
c \(12\)
Galois group $C_4^2$ (as 16T4)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + 4 x^{2} + 4 x + 2 )^{4} + 20 ( x^{4} + 4 x^{2} + 4 x + 2 )^{3} + \left(-320 x^{2} - 1120 x + 1510\right) ( x^{4} + 4 x^{2} + 4 x + 2 )^{2} + \left(10240 x^{3} - 22720 x - 19180\right) ( x^{4} + 4 x^{2} + 4 x + 2 ) + 61440 x^{3} + 143680 x^{2} + 94880 x + 45185$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $16$
Ramification exponent $e$: $4$
Residue field degree $f$: $4$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{5}$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 5 }) }$: $16$
This field is Galois and abelian over $\Q_{5}.$
Visible slopes:None

Intermediate fields

$\Q_{5}(\sqrt{2})$, $\Q_{5}(\sqrt{5})$, $\Q_{5}(\sqrt{5\cdot 2})$, 5.4.0.1, 5.4.2.1, 5.4.2.2, 5.4.3.1, 5.4.3.2, 5.4.3.3, 5.4.3.4, 5.8.4.1, 5.8.6.1, 5.8.6.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:5.4.0.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{4} + 4 x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_4^2$ (as 16T4)
Inertia group: Intransitive group isomorphic to $C_4$
Wild inertia group: $C_1$
Unramified degree: $4$
Tame degree: $4$
Wild slopes: None
Galois mean slope: $3/4$
Galois splitting model:Not computed