Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1497$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,5,8,4,14,16,12)(2,10,6,7,3,13,15,11), (1,2)(3,6)(4,5)(7,12,9,8,11,10)(13,14)(15,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ 72: $C_3^2:D_4$ 144: 12T79 1152: $S_4\wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $S_4\wr C_2$
Low degree siblings
12T237 x 2, 12T238 x 2, 16T1496 x 2, 16T1497, 24T5093 x 2, 24T5117 x 2, 24T5118 x 2, 24T5119, 24T5120 x 2, 24T5121 x 2, 24T5122 x 2, 24T5123 x 2, 24T5124, 24T5125 x 2, 24T5126 x 2, 24T5127 x 2, 24T5128 x 2, 32T205436 x 2, 32T205437 x 2, 32T205438, 32T205439, 36T3213 x 2, 36T3215 x 2, 36T3216 x 2, 36T3218, 36T3224, 36T3449 x 2, 36T3450 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 7,14)( 8,13)( 9,11)(10,12)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $64$ | $3$ | $( 3,16, 5)( 4,15, 6)( 9,14,11)(10,13,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $16$ | $3$ | $( 9,11,14)(10,12,13)$ |
| $ 3, 3, 2, 2, 2, 2, 1, 1 $ | $48$ | $6$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,11, 9)( 8,12,10)$ |
| $ 4, 4, 4, 4 $ | $36$ | $4$ | $( 1, 5, 4,16)( 2, 6, 3,15)( 7,13,11,10)( 8,14,12, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1, 2)( 3, 4)( 5,15)( 6,16)( 7, 8)( 9,13)(10,14)(11,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $72$ | $4$ | $( 1, 5, 4,16)( 2, 6, 3,15)( 7, 8)( 9,13)(10,14)(11,12)$ |
| $ 8, 8 $ | $144$ | $8$ | $( 1, 9, 5, 8, 4,14,16,12)( 2,10, 6, 7, 3,13,15,11)$ |
| $ 4, 4, 4, 4 $ | $144$ | $4$ | $( 1,11, 2,12)( 3, 8, 4, 7)( 5,13,15, 9)( 6,14,16,10)$ |
| $ 8, 8 $ | $144$ | $8$ | $( 1, 8,16, 9, 4,12, 5,14)( 2, 7,15,10, 3,11, 6,13)$ |
| $ 4, 4, 4, 4 $ | $144$ | $4$ | $( 1,13, 2,14)( 3, 9, 4,10)( 5, 7,15,12)( 6, 8,16,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $36$ | $2$ | $( 5,16)( 6,15)(11,14)(12,13)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $72$ | $4$ | $( 1, 4)( 2, 3)( 7,11, 9,14)( 8,12,10,13)$ |
| $ 4, 4, 4, 4 $ | $36$ | $4$ | $( 1, 6, 4,15)( 2, 5, 3,16)( 7,14, 9,11)( 8,13,10,12)$ |
| $ 6, 2, 2, 2, 2, 2 $ | $48$ | $6$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,13, 9, 8,14,10)(11,12)$ |
| $ 6, 2, 2, 2, 2, 2 $ | $16$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,13,11,10,14,12)(15,16)$ |
| $ 6, 6, 2, 2 $ | $64$ | $6$ | $( 1, 3, 6, 2, 4, 5)( 7,12, 9, 8,11,10)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,10)( 8, 9)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,12)( 8,11)( 9,13)(10,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $(11,14)(12,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $36$ | $4$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,11, 9,14)( 8,12,10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $36$ | $2$ | $( 1,15)( 2,16)( 3, 5)( 4, 6)( 7, 9)( 8,10)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $4$ | $( 7,14, 9,11)( 8,13,10,12)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1, 1, 1 $ | $96$ | $6$ | $( 3,16, 5)( 4,15, 6)( 9,14)(10,13)$ |
| $ 4, 4, 3, 3, 1, 1 $ | $96$ | $12$ | $( 1, 6,15)( 2, 5,16)( 7,14,11, 9)( 8,13,12,10)$ |
| $ 6, 4, 4, 2 $ | $96$ | $12$ | $( 1, 5, 4,16)( 2, 6, 3,15)( 7,13, 9, 8,14,10)(11,12)$ |
| $ 6, 2, 2, 2, 2, 2 $ | $96$ | $6$ | $( 1, 2)( 3, 4)( 5,15)( 6,16)( 7, 8)( 9,13,11,10,14,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1,16)( 2,15)( 3, 4)( 5, 6)( 7,10)( 8, 9)(11,13)(12,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $36$ | $4$ | $( 1, 5,15, 3)( 2, 6,16, 4)( 7,13)( 8,14)( 9,12)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3, 6)( 4, 5)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $12$ | $4$ | $( 1, 5,15, 3)( 2, 6,16, 4)( 7, 8)( 9,10)(11,12)(13,14)$ |
| $ 12, 4 $ | $192$ | $12$ | $( 1, 9, 5, 8, 4,14, 2,10, 6, 7, 3,13)(11,16,12,15)$ |
| $ 4, 4, 4, 4 $ | $72$ | $4$ | $( 1,11,16,13)( 2,12,15,14)( 3,10, 6, 7)( 4, 9, 5, 8)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1, 7, 2, 8)( 3,13, 4,14)( 5,12, 6,11)( 9,16,10,15)$ |
| $ 12, 4 $ | $192$ | $12$ | $( 1, 8,16, 9, 4,12, 2, 7,15,10, 3,11)( 5,14, 6,13)$ |
| $ 4, 4, 4, 4 $ | $72$ | $4$ | $( 1, 8, 5,11)( 2, 7, 6,12)( 3, 9,15,13)( 4,10,16,14)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1,10, 2, 9)( 3, 7, 4, 8)( 5,14, 6,13)(11,15,12,16)$ |
Group invariants
| Order: | $2304=2^{8} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |