Normalized defining polynomial
\( x^{16} + 8x^{14} + 52x^{12} + 200x^{10} + 734x^{8} + 792x^{6} + 724x^{4} - 456x^{2} + 81 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(30983446494107742247059456\)
\(\medspace = 2^{72}\cdot 3^{8}\)
|
| |
| Root discriminant: | \(39.19\) |
| |
| Galois root discriminant: | $2^{1313/256}3^{1/2}\approx 60.60594865478429$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}-\frac{1}{4}a^{4}+\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{9}-\frac{1}{4}a^{5}+\frac{1}{4}a$, $\frac{1}{4285193964}a^{14}-\frac{222249911}{2142596982}a^{12}-\frac{675673859}{4285193964}a^{10}-\frac{486390701}{2142596982}a^{8}-\frac{461186263}{4285193964}a^{6}+\frac{39930898}{357099497}a^{4}-\frac{1620476243}{4285193964}a^{2}+\frac{66102482}{357099497}$, $\frac{1}{12855581892}a^{15}-\frac{222249911}{6427790946}a^{13}-\frac{675673859}{12855581892}a^{11}-\frac{778844596}{3213895473}a^{9}-\frac{2603783245}{12855581892}a^{7}-\frac{92412567}{714198994}a^{5}+\frac{522120739}{12855581892}a^{3}+\frac{423201979}{1071298491}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{40082893}{1428397988}a^{15}+\frac{16071361}{1428397988}a^{14}-\frac{319671833}{1428397988}a^{13}+\frac{126469247}{1428397988}a^{12}-\frac{2079526383}{1428397988}a^{11}+\frac{817076231}{1428397988}a^{10}-\frac{7989282777}{1428397988}a^{9}+\frac{3094179469}{1428397988}a^{8}-\frac{29345667331}{1428397988}a^{7}+\frac{11245495519}{1428397988}a^{6}-\frac{31273381823}{1428397988}a^{5}+\frac{10519733185}{1428397988}a^{4}-\frac{28724906153}{1428397988}a^{3}+\frac{7623033277}{1428397988}a^{2}+\frac{20870348249}{1428397988}a-\frac{8776410829}{1428397988}$, $\frac{40082893}{1428397988}a^{15}+\frac{16071361}{1428397988}a^{14}+\frac{319671833}{1428397988}a^{13}+\frac{126469247}{1428397988}a^{12}+\frac{2079526383}{1428397988}a^{11}+\frac{817076231}{1428397988}a^{10}+\frac{7989282777}{1428397988}a^{9}+\frac{3094179469}{1428397988}a^{8}+\frac{29345667331}{1428397988}a^{7}+\frac{11245495519}{1428397988}a^{6}+\frac{31273381823}{1428397988}a^{5}+\frac{10519733185}{1428397988}a^{4}+\frac{28724906153}{1428397988}a^{3}+\frac{7623033277}{1428397988}a^{2}-\frac{20870348249}{1428397988}a-\frac{8776410829}{1428397988}$, $\frac{4338488}{357099497}a^{15}+\frac{2124}{299329}a^{14}+\frac{144827927}{1428397988}a^{13}+\frac{35827}{598658}a^{12}+\frac{475550563}{714198994}a^{11}+\frac{117339}{299329}a^{10}+\frac{3782759091}{1428397988}a^{9}+\frac{468309}{299329}a^{8}+\frac{3482163937}{357099497}a^{7}+\frac{1713784}{299329}a^{6}+\frac{18124962837}{1428397988}a^{5}+\frac{4526211}{598658}a^{4}+\frac{8862123915}{714198994}a^{3}+\frac{1934181}{299329}a^{2}-\frac{3717662419}{1428397988}a-\frac{509266}{299329}$, $\frac{4338488}{357099497}a^{15}-\frac{2124}{299329}a^{14}+\frac{144827927}{1428397988}a^{13}-\frac{35827}{598658}a^{12}+\frac{475550563}{714198994}a^{11}-\frac{117339}{299329}a^{10}+\frac{3782759091}{1428397988}a^{9}-\frac{468309}{299329}a^{8}+\frac{3482163937}{357099497}a^{7}-\frac{1713784}{299329}a^{6}+\frac{18124962837}{1428397988}a^{5}-\frac{4526211}{598658}a^{4}+\frac{8862123915}{714198994}a^{3}-\frac{1934181}{299329}a^{2}-\frac{3717662419}{1428397988}a+\frac{509266}{299329}$, $\frac{84850799}{3213895473}a^{15}-\frac{21474975}{1428397988}a^{14}+\frac{689744461}{3213895473}a^{13}-\frac{161258083}{1428397988}a^{12}+\frac{9023276149}{6427790946}a^{11}-\frac{1053143001}{1428397988}a^{10}+\frac{17650081720}{3213895473}a^{9}-\frac{3911988377}{1428397988}a^{8}+\frac{65198400910}{3213895473}a^{7}-\frac{14673875057}{1428397988}a^{6}+\frac{8692305859}{357099497}a^{5}-\frac{13114062001}{1428397988}a^{4}+\frac{161330159119}{6427790946}a^{3}-\frac{20560822039}{1428397988}a^{2}-\frac{5383314793}{1071298491}a+\frac{5039608129}{1428397988}$, $\frac{1141493465}{6427790946}a^{15}-\frac{119073785}{1428397988}a^{14}-\frac{4688173790}{3213895473}a^{13}-\frac{973496717}{1428397988}a^{12}-\frac{30673071304}{3213895473}a^{11}-\frac{6364062203}{1428397988}a^{10}-\frac{120652304555}{3213895473}a^{9}-\frac{24919445363}{1428397988}a^{8}-\frac{888825396007}{6427790946}a^{7}-\frac{91659505135}{1428397988}a^{6}-\frac{60666720175}{357099497}a^{5}-\frac{109876035027}{1428397988}a^{4}-\frac{524451585235}{3213895473}a^{3}-\frac{105163496141}{1428397988}a^{2}+\frac{52375461617}{1071298491}a+\frac{38118055271}{1428397988}$, $\frac{7281239}{1071298491}a^{15}-\frac{18146485}{2142596982}a^{14}-\frac{73407061}{1071298491}a^{13}-\frac{163786283}{2142596982}a^{12}-\frac{490160837}{1071298491}a^{11}-\frac{513912542}{1071298491}a^{10}-\frac{2141795527}{1071298491}a^{9}-\frac{2082216730}{1071298491}a^{8}-\frac{7711977391}{1071298491}a^{7}-\frac{14215240949}{2142596982}a^{6}-\frac{4717231714}{357099497}a^{5}-\frac{6201098267}{714198994}a^{4}-\frac{7499249597}{1071298491}a^{3}+\frac{2592057133}{1071298491}a^{2}+\frac{2209430278}{357099497}a+\frac{802907441}{357099497}$
|
| |
| Regulator: | \( 4860175.374595397 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 4860175.374595397 \cdot 2}{2\cdot\sqrt{30983446494107742247059456}}\cr\approx \mathstrut & 2.12092848404464 \end{aligned}\] (assuming GRH)
Galois group
$(C_2^2\times C_4^2):D_8$ (as 16T1276):
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for $(C_2^2\times C_4^2):D_8$ |
| Character table for $(C_2^2\times C_4^2):D_8$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.3072.2, 8.0.14495514624.10 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.72b1.6131 | $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{10} + 16 x^{9} + 12 x^{8} + 16 x^{6} + 32 x^{5} + 8 x^{4} + 2$ | $16$ | $1$ | $72$ | 16T1276 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]^{2}$$ |
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |