Normalized defining polynomial
\( x^{16} + 8 x^{14} - 16 x^{13} + 28 x^{12} - 48 x^{11} + 72 x^{10} - 192 x^{9} + 494 x^{8} - 992 x^{7} + \cdots + 27 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(1530046740449765049237504\)
\(\medspace = 2^{74}\cdot 3^{4}\)
|
| |
| Root discriminant: | \(32.47\) |
| |
| Galois root discriminant: | $2^{1313/256}3^{1/2}\approx 60.60594865478429$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3}a^{13}+\frac{1}{3}a^{12}-\frac{1}{3}a^{11}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{6}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{14}+\frac{1}{3}a^{12}+\frac{1}{3}a^{11}-\frac{1}{3}a^{10}+\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{96\cdots 43}a^{15}-\frac{10\cdots 52}{96\cdots 43}a^{14}-\frac{49318843521676}{10\cdots 27}a^{13}+\frac{22541758353035}{96\cdots 43}a^{12}-\frac{24551465216389}{122572604455317}a^{11}+\frac{19\cdots 98}{96\cdots 43}a^{10}-\frac{353716485957439}{96\cdots 43}a^{9}+\frac{39\cdots 72}{96\cdots 43}a^{8}-\frac{625490440491023}{96\cdots 43}a^{7}-\frac{921853059962410}{32\cdots 81}a^{6}-\frac{99698513727389}{96\cdots 43}a^{5}+\frac{511146619991532}{10\cdots 27}a^{4}+\frac{42\cdots 42}{96\cdots 43}a^{3}-\frac{910567590861139}{32\cdots 81}a^{2}-\frac{376978044174802}{32\cdots 81}a+\frac{30187359033241}{10\cdots 27}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{18\cdots 42}{10\cdots 27}a^{15}+\frac{32\cdots 22}{32\cdots 81}a^{14}+\frac{46\cdots 36}{32\cdots 81}a^{13}-\frac{62\cdots 01}{32\cdots 81}a^{12}+\frac{499135984955546}{13619178272813}a^{11}-\frac{19\cdots 00}{32\cdots 81}a^{10}+\frac{28\cdots 46}{32\cdots 81}a^{9}-\frac{30\cdots 90}{10\cdots 27}a^{8}+\frac{22\cdots 78}{32\cdots 81}a^{7}-\frac{14\cdots 33}{10\cdots 27}a^{6}+\frac{22\cdots 80}{10\cdots 27}a^{5}-\frac{70\cdots 89}{32\cdots 81}a^{4}+\frac{53\cdots 06}{32\cdots 81}a^{3}-\frac{10\cdots 65}{10\cdots 27}a^{2}+\frac{45\cdots 88}{10\cdots 27}a-\frac{82\cdots 25}{10\cdots 27}$, $\frac{6584348773454}{10\cdots 27}a^{15}-\frac{106184424192602}{32\cdots 81}a^{14}-\frac{342002329526752}{32\cdots 81}a^{13}-\frac{226990584127687}{10\cdots 27}a^{12}-\frac{4846953734362}{40857534818439}a^{11}-\frac{263264072116408}{32\cdots 81}a^{10}+\frac{470490799814830}{32\cdots 81}a^{9}+\frac{18\cdots 04}{32\cdots 81}a^{8}+\frac{34\cdots 10}{32\cdots 81}a^{7}-\frac{48\cdots 53}{32\cdots 81}a^{6}+\frac{22\cdots 12}{10\cdots 27}a^{5}-\frac{17\cdots 59}{32\cdots 81}a^{4}-\frac{34\cdots 26}{10\cdots 27}a^{3}+\frac{12\cdots 39}{32\cdots 81}a^{2}-\frac{315151635726328}{10\cdots 27}a-\frac{104147176094345}{10\cdots 27}$, $\frac{11\cdots 38}{32\cdots 81}a^{15}+\frac{64\cdots 17}{32\cdots 81}a^{14}+\frac{32\cdots 04}{10\cdots 27}a^{13}-\frac{13\cdots 46}{32\cdots 81}a^{12}+\frac{32\cdots 38}{40857534818439}a^{11}-\frac{43\cdots 15}{32\cdots 81}a^{10}+\frac{62\cdots 77}{32\cdots 81}a^{9}-\frac{65\cdots 37}{10\cdots 27}a^{8}+\frac{16\cdots 12}{10\cdots 27}a^{7}-\frac{92\cdots 28}{32\cdots 81}a^{6}+\frac{14\cdots 78}{32\cdots 81}a^{5}-\frac{15\cdots 81}{32\cdots 81}a^{4}+\frac{11\cdots 77}{32\cdots 81}a^{3}-\frac{73\cdots 26}{32\cdots 81}a^{2}+\frac{10\cdots 34}{10\cdots 27}a-\frac{19\cdots 41}{10\cdots 27}$, $\frac{30\cdots 78}{32\cdots 81}a^{15}-\frac{11\cdots 14}{32\cdots 81}a^{14}-\frac{24\cdots 04}{32\cdots 81}a^{13}+\frac{39\cdots 15}{32\cdots 81}a^{12}-\frac{296904311850650}{13619178272813}a^{11}+\frac{11\cdots 14}{32\cdots 81}a^{10}-\frac{17\cdots 83}{32\cdots 81}a^{9}+\frac{52\cdots 62}{32\cdots 81}a^{8}-\frac{43\cdots 84}{10\cdots 27}a^{7}+\frac{25\cdots 65}{32\cdots 81}a^{6}-\frac{41\cdots 06}{32\cdots 81}a^{5}+\frac{44\cdots 14}{32\cdots 81}a^{4}-\frac{34\cdots 57}{32\cdots 81}a^{3}+\frac{21\cdots 71}{32\cdots 81}a^{2}-\frac{31\cdots 12}{10\cdots 27}a+\frac{64\cdots 44}{10\cdots 27}$, $\frac{64\cdots 37}{10\cdots 27}a^{15}+\frac{918808030139208}{10\cdots 27}a^{14}+\frac{15\cdots 82}{32\cdots 81}a^{13}-\frac{28\cdots 69}{32\cdots 81}a^{12}+\frac{59\cdots 06}{40857534818439}a^{11}-\frac{27\cdots 60}{10\cdots 27}a^{10}+\frac{12\cdots 73}{32\cdots 81}a^{9}-\frac{34\cdots 99}{32\cdots 81}a^{8}+\frac{29\cdots 27}{10\cdots 27}a^{7}-\frac{17\cdots 49}{32\cdots 81}a^{6}+\frac{95\cdots 46}{10\cdots 27}a^{5}-\frac{10\cdots 10}{10\cdots 27}a^{4}+\frac{25\cdots 67}{32\cdots 81}a^{3}-\frac{16\cdots 75}{32\cdots 81}a^{2}+\frac{25\cdots 58}{10\cdots 27}a-\frac{56\cdots 89}{10\cdots 27}$, $\frac{45\cdots 79}{96\cdots 43}a^{15}-\frac{48\cdots 00}{96\cdots 43}a^{14}-\frac{45\cdots 58}{10\cdots 27}a^{13}+\frac{32\cdots 51}{96\cdots 43}a^{12}-\frac{10\cdots 11}{122572604455317}a^{11}+\frac{12\cdots 18}{96\cdots 43}a^{10}-\frac{17\cdots 66}{96\cdots 43}a^{9}+\frac{66\cdots 16}{96\cdots 43}a^{8}-\frac{15\cdots 31}{96\cdots 43}a^{7}+\frac{92\cdots 40}{32\cdots 81}a^{6}-\frac{43\cdots 36}{96\cdots 43}a^{5}+\frac{43\cdots 45}{10\cdots 27}a^{4}-\frac{27\cdots 99}{96\cdots 43}a^{3}+\frac{54\cdots 40}{32\cdots 81}a^{2}-\frac{16\cdots 50}{32\cdots 81}a+\frac{29\cdots 07}{10\cdots 27}$, $\frac{94\cdots 82}{96\cdots 43}a^{15}-\frac{43\cdots 75}{96\cdots 43}a^{14}-\frac{38\cdots 57}{32\cdots 81}a^{13}-\frac{22\cdots 42}{96\cdots 43}a^{12}+\frac{11\cdots 19}{122572604455317}a^{11}-\frac{35\cdots 20}{96\cdots 43}a^{10}+\frac{58\cdots 04}{96\cdots 43}a^{9}+\frac{13\cdots 58}{96\cdots 43}a^{8}+\frac{17\cdots 00}{96\cdots 43}a^{7}-\frac{19\cdots 97}{32\cdots 81}a^{6}+\frac{12\cdots 93}{96\cdots 43}a^{5}-\frac{83\cdots 38}{32\cdots 81}a^{4}+\frac{24\cdots 79}{96\cdots 43}a^{3}-\frac{19\cdots 92}{10\cdots 27}a^{2}+\frac{35\cdots 04}{32\cdots 81}a-\frac{39\cdots 03}{10\cdots 27}$
|
| |
| Regulator: | \( 4716493.83739645 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 4716493.83739645 \cdot 1}{2\cdot\sqrt{1530046740449765049237504}}\cr\approx \mathstrut & 4.63101164988779 \end{aligned}\]
Galois group
$(C_2^2\times C_4^2):D_8$ (as 16T1276):
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for $(C_2^2\times C_4^2):D_8$ |
| Character table for $(C_2^2\times C_4^2):D_8$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.2048.1, 8.0.6442450944.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.74c1.772 | $x^{16} + 16 x^{14} + 16 x^{13} + 8 x^{12} + 16 x^{11} + 16 x^{10} + 32 x^{6} + 16 x^{2} + 2$ | $16$ | $1$ | $74$ | 16T1276 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]^{2}$$ |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |