Normalized defining polynomial
\( x^{16} - 2 x^{15} - 3 x^{14} + 3 x^{13} + 13 x^{12} - 17 x^{11} + 5 x^{10} + 10 x^{9} - 19 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(239625547119140625\)
\(\medspace = 3^{4}\cdot 5^{12}\cdot 59^{4}\)
|
| |
Root discriminant: | \(12.20\) |
| |
Galois root discriminant: | $3^{1/2}5^{3/4}59^{1/2}\approx 44.48505546908213$ | ||
Ramified primes: |
\(3\), \(5\), \(59\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\zeta_{5})\) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5}a^{12}-\frac{1}{5}a^{11}+\frac{1}{5}a^{8}-\frac{1}{5}a^{6}+\frac{1}{5}a^{4}-\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{13}-\frac{1}{5}a^{11}+\frac{1}{5}a^{9}+\frac{1}{5}a^{8}-\frac{1}{5}a^{7}-\frac{1}{5}a^{6}+\frac{1}{5}a^{5}+\frac{1}{5}a^{4}-\frac{1}{5}a^{2}+\frac{1}{5}$, $\frac{1}{695}a^{14}-\frac{44}{695}a^{13}+\frac{37}{695}a^{12}+\frac{161}{695}a^{11}-\frac{114}{695}a^{10}+\frac{162}{695}a^{9}-\frac{152}{695}a^{8}-\frac{162}{695}a^{7}-\frac{13}{695}a^{6}+\frac{162}{695}a^{5}+\frac{164}{695}a^{4}-\frac{256}{695}a^{3}-\frac{241}{695}a^{2}-\frac{322}{695}a+\frac{279}{695}$, $\frac{1}{695}a^{15}+\frac{47}{695}a^{13}-\frac{18}{695}a^{12}-\frac{119}{695}a^{11}+\frac{11}{695}a^{10}-\frac{113}{695}a^{9}+\frac{239}{695}a^{8}-\frac{52}{695}a^{7}+\frac{146}{695}a^{6}+\frac{203}{695}a^{5}+\frac{149}{695}a^{4}+\frac{62}{139}a^{3}+\frac{333}{695}a^{2}-\frac{267}{695}a-\frac{19}{139}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -\frac{8171}{695} a^{15} + \frac{11984}{695} a^{14} + \frac{30809}{695} a^{13} - \frac{7909}{695} a^{12} - \frac{110079}{695} a^{11} + \frac{79893}{695} a^{10} + \frac{358}{695} a^{9} - \frac{16019}{139} a^{8} + \frac{112842}{695} a^{7} - \frac{4623}{139} a^{6} - \frac{51183}{695} a^{5} + \frac{110999}{695} a^{4} - \frac{47864}{695} a^{3} - \frac{48114}{695} a^{2} - \frac{2241}{695} a + \frac{14833}{695} \)
(order $10$)
|
| |
Fundamental units: |
$\frac{2789}{695}a^{15}+\frac{790}{139}a^{14}+\frac{10647}{695}a^{13}-\frac{428}{139}a^{12}-\frac{37407}{695}a^{11}+\frac{25676}{695}a^{10}+\frac{822}{695}a^{9}-\frac{27508}{695}a^{8}+\frac{36803}{695}a^{7}-\frac{6377}{695}a^{6}-\frac{17312}{695}a^{5}+\frac{36527}{695}a^{4}-\frac{2916}{139}a^{3}-\frac{16697}{695}a^{2}-\frac{280}{139}a+\frac{5083}{695}$, $\frac{8171}{695}a^{15}-\frac{11984}{695}a^{14}-\frac{30809}{695}a^{13}+\frac{7909}{695}a^{12}+\frac{110079}{695}a^{11}-\frac{79893}{695}a^{10}-\frac{358}{695}a^{9}+\frac{16019}{139}a^{8}-\frac{112842}{695}a^{7}+\frac{4623}{139}a^{6}+\frac{51183}{695}a^{5}-\frac{110999}{695}a^{4}+\frac{47864}{695}a^{3}+\frac{48114}{695}a^{2}+\frac{2241}{695}a-\frac{14138}{695}$, $\frac{6984}{695}a^{15}-\frac{2005}{139}a^{14}-\frac{5341}{139}a^{13}+\frac{5987}{695}a^{12}+\frac{94548}{695}a^{11}-\frac{65381}{695}a^{10}-\frac{652}{139}a^{9}+\frac{68812}{695}a^{8}-\frac{18679}{139}a^{7}+\frac{15888}{695}a^{6}+\frac{44319}{695}a^{5}-\frac{93493}{695}a^{4}+\frac{7482}{139}a^{3}+\frac{8616}{139}a^{2}+\frac{3068}{695}a-\frac{12699}{695}$, $\frac{290}{139}a^{15}+\frac{355}{139}a^{14}+\frac{1191}{139}a^{13}-\frac{104}{695}a^{12}-\frac{19696}{695}a^{11}+\frac{1932}{139}a^{10}+\frac{625}{139}a^{9}-\frac{14619}{695}a^{8}+\frac{3440}{139}a^{7}+\frac{274}{695}a^{6}-\frac{2194}{139}a^{5}+\frac{18616}{695}a^{4}-\frac{775}{139}a^{3}-\frac{2120}{139}a^{2}-\frac{1476}{695}a+\frac{1776}{695}$, $\frac{5537}{695}a^{15}+\frac{7834}{695}a^{14}+\frac{4252}{139}a^{13}-\frac{4402}{695}a^{12}-\frac{74612}{695}a^{11}+\frac{50987}{695}a^{10}+\frac{2999}{695}a^{9}-\frac{55757}{695}a^{8}+\frac{73826}{695}a^{7}-\frac{12443}{695}a^{6}-\frac{36993}{695}a^{5}+\frac{74872}{695}a^{4}-\frac{28744}{695}a^{3}-\frac{6883}{139}a^{2}-\frac{1113}{695}a+\frac{1936}{139}$, $\frac{13464}{695}a^{15}+\frac{19648}{695}a^{14}+\frac{51001}{695}a^{13}-\frac{12846}{695}a^{12}-\frac{181883}{695}a^{11}+\frac{130704}{695}a^{10}+\frac{3289}{695}a^{9}-\frac{26630}{139}a^{8}+\frac{184006}{695}a^{7}-\frac{7162}{139}a^{6}-\frac{17379}{139}a^{5}+\frac{182393}{695}a^{4}-\frac{76293}{695}a^{3}-\frac{81376}{695}a^{2}-\frac{3059}{695}a+\frac{24654}{695}$, $\frac{11023}{695}a^{15}+\frac{16246}{695}a^{14}+\frac{41586}{695}a^{13}-\frac{11132}{695}a^{12}-\frac{29822}{139}a^{11}+\frac{108923}{695}a^{10}+\frac{1992}{695}a^{9}-\frac{108646}{695}a^{8}+\frac{151583}{695}a^{7}-\frac{30514}{695}a^{6}-\frac{70911}{695}a^{5}+\frac{29855}{139}a^{4}-\frac{64546}{695}a^{3}-\frac{66601}{695}a^{2}-\frac{1938}{695}a+\frac{20792}{695}$
|
| |
Regulator: | \( 628.8983375986766 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 628.8983375986766 \cdot 1}{10\cdot\sqrt{239625547119140625}}\cr\approx \mathstrut & 0.312070584847752 \end{aligned}\]
Galois group
$C_2^5:C_4$ (as 16T227):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.1475.1, \(\Q(\zeta_{5})\), 4.2.7375.1, 8.0.97903125.1, 8.4.97903125.1, 8.0.54390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(5\)
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
\(59\)
| 59.2.1.0a1.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
59.2.1.0a1.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
59.2.1.0a1.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
59.2.1.0a1.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
59.2.2.2a1.2 | $x^{4} + 116 x^{3} + 3368 x^{2} + 232 x + 63$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
59.2.2.2a1.2 | $x^{4} + 116 x^{3} + 3368 x^{2} + 232 x + 63$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |