Normalized defining polynomial
\( x^{16} + 7x^{14} + 49x^{12} + 108x^{10} + 196x^{8} - 450x^{6} + 260x^{4} - 75x^{2} + 25 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(17944209936000000000000\)
\(\medspace = 2^{16}\cdot 3^{4}\cdot 5^{12}\cdot 61^{4}\)
|
| |
Root discriminant: | \(24.60\) |
| |
Galois root discriminant: | $2\cdot 3^{1/2}5^{3/4}61^{1/2}\approx 90.46551164752914$ | ||
Ramified primes: |
\(2\), \(3\), \(5\), \(61\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 8.0.14884000000.3 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5}a^{12}+\frac{2}{5}a^{10}-\frac{1}{5}a^{8}-\frac{2}{5}a^{6}+\frac{1}{5}a^{4}$, $\frac{1}{5}a^{13}+\frac{2}{5}a^{11}-\frac{1}{5}a^{9}-\frac{2}{5}a^{7}+\frac{1}{5}a^{5}$, $\frac{1}{1360898275}a^{14}+\frac{131672142}{1360898275}a^{12}+\frac{354612689}{1360898275}a^{10}+\frac{30386508}{123718025}a^{8}+\frac{165495856}{1360898275}a^{6}+\frac{26970484}{272179655}a^{4}+\frac{101191166}{272179655}a^{2}-\frac{10279391}{54435931}$, $\frac{1}{1360898275}a^{15}+\frac{131672142}{1360898275}a^{13}+\frac{354612689}{1360898275}a^{11}+\frac{30386508}{123718025}a^{9}+\frac{165495856}{1360898275}a^{7}+\frac{26970484}{272179655}a^{5}+\frac{101191166}{272179655}a^{3}-\frac{10279391}{54435931}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{4}$, which has order $4$ |
| |
Narrow class group: | $C_{4}$, which has order $4$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{14607633}{1360898275}a^{14}-\frac{98539321}{1360898275}a^{12}-\frac{679524057}{1360898275}a^{10}-\frac{119741504}{123718025}a^{8}-\frac{1943040228}{1360898275}a^{6}+\frac{1743480406}{272179655}a^{4}-\frac{619108153}{272179655}a^{2}+\frac{29350966}{54435931}$, $\frac{2887}{136705}a^{14}+\frac{21266}{136705}a^{12}+\frac{148927}{136705}a^{10}+\frac{362884}{136705}a^{8}+\frac{674743}{136705}a^{6}-\frac{1127703}{136705}a^{4}+\frac{37832}{27341}a^{2}+\frac{15540}{27341}$, $\frac{691851}{54435931}a^{14}+\frac{6869031}{54435931}a^{12}+\frac{49687716}{54435931}a^{10}+\frac{16932716}{4948721}a^{8}+\frac{440256882}{54435931}a^{6}+\frac{311668175}{54435931}a^{4}-\frac{287967138}{54435931}a^{2}+\frac{34800022}{54435931}$, $\frac{496654}{123718025}a^{14}-\frac{3768243}{123718025}a^{12}-\frac{26209656}{123718025}a^{10}-\frac{67881052}{123718025}a^{8}-\frac{129468674}{123718025}a^{6}+\frac{26037029}{24743605}a^{4}-\frac{13807014}{24743605}a^{2}+a-\frac{2823447}{4948721}$, $\frac{16480001}{1360898275}a^{15}-\frac{2887}{136705}a^{14}-\frac{105290507}{1360898275}a^{13}-\frac{21266}{136705}a^{12}-\frac{737567719}{1360898275}a^{11}-\frac{148927}{136705}a^{10}-\frac{117179993}{123718025}a^{9}-\frac{362884}{136705}a^{8}-\frac{2171760076}{1360898275}a^{7}-\frac{674743}{136705}a^{6}+\frac{1870148788}{272179655}a^{5}+\frac{1127703}{136705}a^{4}-\frac{1829285811}{272179655}a^{3}-\frac{37832}{27341}a^{2}+\frac{192174839}{54435931}a-\frac{15540}{27341}$, $\frac{77155424}{1360898275}a^{15}-\frac{38732228}{1360898275}a^{14}-\frac{551027418}{1360898275}a^{13}-\frac{298995731}{1360898275}a^{12}-\frac{3861795981}{1360898275}a^{11}-\frac{2098354327}{1360898275}a^{10}-\frac{809724832}{123718025}a^{9}-\frac{507483794}{123718025}a^{8}-\frac{16576242849}{1360898275}a^{7}-\frac{10808567283}{1360898275}a^{6}+\frac{6363115782}{272179655}a^{5}+\frac{2336410887}{272179655}a^{4}-\frac{3309512124}{272179655}a^{3}+\frac{500936652}{272179655}a^{2}+\frac{214230219}{54435931}a-\frac{30189680}{54435931}$, $\frac{38732228}{1360898275}a^{15}+\frac{2887}{136705}a^{14}+\frac{298995731}{1360898275}a^{13}+\frac{21266}{136705}a^{12}+\frac{2098354327}{1360898275}a^{11}+\frac{148927}{136705}a^{10}+\frac{507483794}{123718025}a^{9}+\frac{362884}{136705}a^{8}+\frac{10808567283}{1360898275}a^{7}+\frac{674743}{136705}a^{6}-\frac{2336410887}{272179655}a^{5}-\frac{1127703}{136705}a^{4}-\frac{500936652}{272179655}a^{3}+\frac{37832}{27341}a^{2}+\frac{30189680}{54435931}a-\frac{11801}{27341}$
|
| |
Regulator: | \( 10557.253437747004 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 10557.253437747004 \cdot 4}{2\cdot\sqrt{17944209936000000000000}}\cr\approx \mathstrut & 0.382875625313931 \end{aligned}\]
Galois group
$C_2^5:C_4$ (as 16T227):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 4.0.1525.1, 4.0.122000.2, 8.0.26791200000.6, 8.0.104653125.1, 8.0.14884000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{8}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.8.2.16a1.1 | $x^{16} + 2 x^{12} + 2 x^{11} + 2 x^{10} + 5 x^{8} + 2 x^{7} + 3 x^{6} + 2 x^{5} + 5 x^{4} + 4 x^{3} + 4 x^{2} + 5$ | $2$ | $8$ | $16$ | $C_8\times C_2$ | $$[2]^{8}$$ |
\(3\)
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(5\)
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
\(61\)
| 61.2.1.0a1.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
61.2.1.0a1.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
61.2.1.0a1.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
61.2.1.0a1.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
61.2.2.2a1.2 | $x^{4} + 120 x^{3} + 3604 x^{2} + 240 x + 65$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
61.2.2.2a1.2 | $x^{4} + 120 x^{3} + 3604 x^{2} + 240 x + 65$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |