Normalized defining polynomial
\( x^{16} - 3 x^{15} + 4 x^{14} - 9 x^{13} + 12 x^{12} + 12 x^{11} + 8 x^{10} - 54 x^{9} - 19 x^{8} + 54 x^{7} + 8 x^{6} - 12 x^{5} + 12 x^{4} + 9 x^{3} + 4 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1132927402587890625=3^{8}\cdot 5^{12}\cdot 29^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{20} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{10} a^{9} + \frac{1}{4} a^{7} - \frac{1}{20} a^{6} - \frac{1}{4} a^{5} + \frac{1}{10} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{20}$, $\frac{1}{20} a^{13} + \frac{3}{20} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{5} a^{7} + \frac{1}{4} a^{5} + \frac{1}{10} a^{4} + \frac{1}{4} a^{3} - \frac{1}{5} a - \frac{1}{4}$, $\frac{1}{2360} a^{14} - \frac{13}{1180} a^{13} + \frac{13}{2360} a^{12} + \frac{69}{1180} a^{11} + \frac{37}{2360} a^{10} + \frac{479}{2360} a^{9} + \frac{237}{1180} a^{8} - \frac{919}{2360} a^{7} + \frac{44}{295} a^{6} - \frac{583}{2360} a^{5} + \frac{553}{2360} a^{4} - \frac{231}{590} a^{3} + \frac{931}{2360} a^{2} + \frac{141}{590} a + \frac{353}{2360}$, $\frac{1}{342200} a^{15} + \frac{7}{171100} a^{14} - \frac{6573}{342200} a^{13} - \frac{15}{1711} a^{12} - \frac{54033}{342200} a^{11} - \frac{62469}{342200} a^{10} + \frac{10601}{34220} a^{9} + \frac{77631}{342200} a^{8} + \frac{71299}{171100} a^{7} - \frac{11201}{68440} a^{6} + \frac{156593}{342200} a^{5} + \frac{5983}{42775} a^{4} - \frac{483}{13688} a^{3} + \frac{51647}{171100} a^{2} + \frac{116487}{342200} a + \frac{4479}{42775}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{18133}{342200} a^{15} + \frac{6001}{171100} a^{14} - \frac{162059}{342200} a^{13} + \frac{20307}{34220} a^{12} - \frac{501719}{342200} a^{11} + \frac{1283023}{342200} a^{10} + \frac{63899}{34220} a^{9} - \frac{1073567}{342200} a^{8} - \frac{1003129}{85550} a^{7} + \frac{259233}{68440} a^{6} + \frac{4734049}{342200} a^{5} - \frac{4104}{725} a^{4} - \frac{70737}{68440} a^{3} + \frac{159699}{42775} a^{2} - \frac{30179}{342200} a + \frac{19319}{85550} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3158.73230855 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:C_4$ (as 16T21):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2 \times (C_2^2:C_4)$ |
| Character table for $C_2 \times (C_2^2:C_4)$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |