Normalized defining polynomial
\( x^{15} - 126 x^{13} - 1008 x^{12} - 47968 x^{11} - 737248 x^{10} - 5886360 x^{9} - 48520512 x^{8} - 378179296 x^{7} - 1954203776 x^{6} - 6255936640 x^{5} - 12603064320 x^{4} - 16068774400 x^{3} - 12611020800 x^{2} - 5569536000 x - 1060864000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6242427558646320395593447809832981520060416000000=2^{18}\cdot 5^{6}\cdot 7^{4}\cdot 19^{10}\cdot 37^{4}\cdot 1481^{2}\cdot 158699^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1790.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 19, 37, 1481, 158699$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{6} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{80} a^{7} - \frac{1}{40} a^{5} + \frac{1}{20} a^{4} - \frac{1}{2} a$, $\frac{1}{800} a^{8} + \frac{3}{400} a^{6} + \frac{1}{100} a^{5} + \frac{2}{25} a^{4} - \frac{1}{50} a^{3} + \frac{7}{100} a^{2} - \frac{1}{5}$, $\frac{1}{3200} a^{9} - \frac{7}{1600} a^{7} - \frac{1}{100} a^{6} - \frac{1}{200} a^{5} + \frac{3}{25} a^{4} + \frac{17}{400} a^{3} + \frac{1}{10} a^{2} + \frac{9}{20} a$, $\frac{1}{6400} a^{10} + \frac{1}{3200} a^{8} - \frac{1}{200} a^{7} - \frac{1}{80} a^{6} - \frac{1}{50} a^{5} - \frac{3}{160} a^{4} + \frac{11}{100} a^{3} - \frac{7}{200} a^{2} - \frac{2}{5}$, $\frac{1}{128000} a^{11} + \frac{7}{64000} a^{9} - \frac{3}{8000} a^{8} + \frac{89}{16000} a^{7} - \frac{9}{4000} a^{6} - \frac{27}{3200} a^{5} - \frac{83}{2000} a^{4} + \frac{153}{1000} a^{3} - \frac{87}{1000} a^{2} - \frac{97}{200} a + \frac{1}{50}$, $\frac{1}{1280000} a^{12} + \frac{47}{640000} a^{10} + \frac{3}{20000} a^{9} - \frac{11}{160000} a^{8} - \frac{97}{20000} a^{7} + \frac{277}{32000} a^{6} - \frac{323}{20000} a^{5} - \frac{341}{5000} a^{4} - \frac{117}{625} a^{3} - \frac{249}{2000} a^{2} + \frac{34}{125} a + \frac{9}{25}$, $\frac{1}{5120000000} a^{13} - \frac{31}{128000000} a^{12} + \frac{5817}{2560000000} a^{11} + \frac{451}{160000000} a^{10} - \frac{2993}{20000000} a^{9} - \frac{36319}{160000000} a^{8} - \frac{148343}{128000000} a^{7} - \frac{75207}{20000000} a^{6} + \frac{2239237}{160000000} a^{5} + \frac{717073}{40000000} a^{4} - \frac{1208209}{8000000} a^{3} - \frac{130799}{1000000} a^{2} + \frac{181959}{400000} a + \frac{31017}{100000}$, $\frac{1}{655360000000} a^{14} - \frac{11}{163840000000} a^{13} + \frac{60297}{327680000000} a^{12} - \frac{258913}{81920000000} a^{11} - \frac{63003}{1280000000} a^{10} + \frac{2478657}{20480000000} a^{9} - \frac{32003811}{81920000000} a^{8} + \frac{30777559}{20480000000} a^{7} - \frac{198911339}{20480000000} a^{6} + \frac{10367617}{640000000} a^{5} + \frac{39834263}{5120000000} a^{4} - \frac{1347289}{256000000} a^{3} - \frac{33023413}{256000000} a^{2} - \frac{1598821}{6400000} a - \frac{1323917}{3200000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33525688191400000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 71 conjugacy class representatives for [1/2.S(5)^3]3 are not computed |
| Character table for [1/2.S(5)^3]3 is not computed |
Intermediate fields
| 3.3.361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | $15$ | ${\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | $15$ | $15$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.8 | $x^{6} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.8 | $x^{6} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 19 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 1481 | Data not computed | ||||||
| 158699 | Data not computed | ||||||