Properties

Label 7.5.4.1
Base \(\Q_{7}\)
Degree \(5\)
e \(5\)
f \(1\)
c \(4\)
Galois group $F_5$ (as 5T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{5} + 7\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $5$
Ramification exponent $e$: $5$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 7 }) }$: $1$
This field is not Galois over $\Q_{7}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{5} + 7 \) Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $F_5$ (as 5T3)
Inertia group: $C_5$ (as 5T1)
Wild inertia group: $C_1$
Unramified degree: $4$
Tame degree: $5$
Wild slopes: None
Galois mean slope: $4/5$
Galois splitting model:$x^{5} - 7$