Base \(\Q_{7}\)
Degree \(5\)
e \(5\)
f \(1\)
c \(4\)
Galois group $F_5$ (as 5T3)

Related objects


Learn more

Defining polynomial

\(x^{5} + 7\) Copy content Toggle raw display


Base field: $\Q_{7}$
Degree $d$: $5$
Ramification exponent $e$: $5$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 7 }) }$: $1$
This field is not Galois over $\Q_{7}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{5} + 7 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{4} + 5z^{3} + 3z^{2} + 3z + 5$
Associated inertia:$4$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$F_5$ (as 5T3)
Inertia group:$C_5$ (as 5T1)
Wild inertia group:$C_1$
Unramified degree:$4$
Tame degree:$5$
Wild slopes:None
Galois mean slope:$4/5$
Galois splitting model:$x^{5} - 7$