Defining polynomial
\(x^{15} + 95 x^{12} + 15 x^{11} + 51 x^{10} + 3610 x^{9} - 4275 x^{8} - 28995 x^{7} + 69100 x^{6} - 31623 x^{5} + 835620 x^{4} + 700180 x^{3} + 1194855 x^{2} - 1636410 x + 2391332\)
|
Invariants
Base field: | $\Q_{19}$ |
Degree $d$: | $15$ |
Ramification exponent $e$: | $3$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $10$ |
Discriminant root field: | $\Q_{19}$ |
Root number: | $1$ |
$\card{ \Gal(K/\Q_{ 19 }) }$: | $15$ |
This field is Galois and abelian over $\Q_{19}.$ | |
Visible slopes: | None |
Intermediate fields
19.3.2.2, 19.5.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 19.5.0.1 $\cong \Q_{19}(t)$ where $t$ is a root of
\( x^{5} + 5 x + 17 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + 19 \)
$\ \in\Q_{19}(t)[x]$
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_{15}$ (as 15T1) |
Inertia group: | Intransitive group isomorphic to $C_3$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $5$ |
Tame degree: | $3$ |
Wild slopes: | None |
Galois mean slope: | $2/3$ |
Galois splitting model: | Not computed |