Normalized defining polynomial
\( x^{14} - 2900730 x^{12} - 287910000 x^{11} + 3313325898225 x^{10} + 597401557200000 x^{9} + \cdots + 40\!\cdots\!75 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[14, 0]$ |
| |
| Discriminant: |
\(120\!\cdots\!000\)
\(\medspace = 2^{14}\cdot 3^{22}\cdot 5^{12}\cdot 7^{14}\cdot 19^{6}\cdot 197^{6}\cdot 199^{6}\cdot 2593^{6}\cdot 34963^{6}\cdot 560233^{6}\cdot 1072255949^{2}\cdot 6488895781911832501^{2}\)
|
| |
| Root discriminant: | \(7.295\times 10^{14}\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\), \(19\), \(197\), \(199\), \(2593\), \(34963\), \(560233\), \(1072255949\), \(6488895781911832501\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{5}a^{2}$, $\frac{1}{25}a^{3}+\frac{2}{5}a$, $\frac{1}{125}a^{4}+\frac{2}{25}a^{2}$, $\frac{1}{625}a^{5}+\frac{2}{125}a^{3}$, $\frac{1}{3125}a^{6}+\frac{2}{625}a^{4}$, $\frac{1}{244140625}a^{7}+\frac{22427}{48828125}a^{5}+\frac{922}{390625}a^{4}-\frac{4938}{390625}a^{3}-\frac{3542}{78125}a^{2}-\frac{877}{3125}a+\frac{2982}{15625}$, $\frac{1}{57373046875}a^{8}+\frac{23}{11474609375}a^{7}+\frac{569302}{11474609375}a^{6}+\frac{851371}{2294921875}a^{5}+\frac{144842}{91796875}a^{4}-\frac{201491}{18359375}a^{3}+\frac{242274}{3671875}a^{2}+\frac{1498707}{3671875}a+\frac{84211}{734375}$, $\frac{1}{286865234375}a^{9}+\frac{72}{57373046875}a^{7}-\frac{49078}{458984375}a^{6}-\frac{920807}{2294921875}a^{5}+\frac{35148}{91796875}a^{4}+\frac{289038}{18359375}a^{3}+\frac{1340642}{18359375}a^{2}+\frac{67317}{146875}a+\frac{167478}{734375}$, $\frac{1}{1434326171875}a^{10}+\frac{2}{286865234375}a^{8}+\frac{4}{11474609375}a^{7}-\frac{309457}{2294921875}a^{6}-\frac{1539472}{2294921875}a^{5}-\frac{14473}{18359375}a^{4}-\frac{767403}{91796875}a^{3}+\frac{231177}{3671875}a^{2}+\frac{5398}{15625}a+\frac{108658}{734375}$, $\frac{1}{7171630859375}a^{11}+\frac{2}{1434326171875}a^{9}-\frac{7}{11474609375}a^{7}-\frac{28961}{2294921875}a^{6}-\frac{12101}{18359375}a^{5}-\frac{1705518}{458984375}a^{4}+\frac{3749}{3671875}a^{3}-\frac{103779}{3671875}a^{2}+\frac{221721}{734375}a+\frac{13696}{29375}$, $\frac{1}{107574462890625}a^{12}-\frac{1}{7171630859375}a^{10}+\frac{1}{286865234375}a^{8}+\frac{2}{2294921875}a^{7}+\frac{1529692}{11474609375}a^{6}-\frac{268177}{2294921875}a^{5}-\frac{352148}{91796875}a^{4}-\frac{67199}{91796875}a^{3}+\frac{16308}{3671875}a^{2}+\frac{1200367}{3671875}a-\frac{303731}{734375}$, $\frac{1}{107574462890625}a^{13}+\frac{2}{1434326171875}a^{9}-\frac{67}{57373046875}a^{7}+\frac{130232}{2294921875}a^{6}-\frac{364836}{2294921875}a^{5}+\frac{1629172}{458984375}a^{4}+\frac{333564}{18359375}a^{3}+\frac{660938}{18359375}a^{2}-\frac{11863}{29375}a-\frac{186516}{734375}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
|
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{14}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{12082462805952683578833887544607885354840529275474033703346853825890523525763932307253207072895617326779140942034887593472026784080351332996854475050975704479877705399512513606726026903633577245444000000000000}}\cr\mathstrut & \text{
Galois group
| A non-solvable group of order 43589145600 |
| The 72 conjugacy class representatives for $A_{14}$ |
| Character table for $A_{14}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | R | ${\href{/padicField/23.11.0.1}{11} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.13.0.1}{13} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.7.0.1}{7} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.13.0.1}{13} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.6.2.12a7.1 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 3 x^{8} + 4 x^{7} + 5 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + x^{2} + 2 x + 3$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.12.21a1.23 | $x^{12} + 3 x^{11} + 3 x^{10} + 9 x^{2} + 6$ | $12$ | $1$ | $21$ | 12T169 | $$[\frac{3}{2}, 2, \frac{9}{4}, \frac{9}{4}]_{4}^{2}$$ | |
|
\(5\)
| 5.1.2.1a1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.1.2.1a1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.5.5a1.2 | $x^{5} + 10 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $$[\frac{5}{4}]_{4}$$ | |
| 5.1.5.5a1.2 | $x^{5} + 10 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $$[\frac{5}{4}]_{4}$$ | |
|
\(7\)
| 7.1.7.7a1.4 | $x^{7} + 28 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $$[\frac{7}{6}]_{6}$$ |
| 7.1.7.7a1.1 | $x^{7} + 7 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $$[\frac{7}{6}]_{6}$$ | |
|
\(19\)
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 19.6.2.6a1.2 | $x^{12} + 34 x^{9} + 34 x^{8} + 12 x^{7} + 293 x^{6} + 578 x^{5} + 493 x^{4} + 272 x^{3} + 104 x^{2} + 24 x + 23$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ | |
|
\(197\)
| $\Q_{197}$ | $x + 195$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{197}$ | $x + 195$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 197.1.2.1a1.1 | $x^{2} + 197$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 197.5.2.5a1.2 | $x^{10} + 8 x^{6} + 390 x^{5} + 16 x^{2} + 1560 x + 38222$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ | |
|
\(199\)
| $\Q_{199}$ | $x + 196$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{199}$ | $x + 196$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 199.6.2.6a1.2 | $x^{12} + 180 x^{9} + 116 x^{8} + 158 x^{7} + 8106 x^{6} + 10440 x^{5} + 17584 x^{4} + 9704 x^{3} + 6589 x^{2} + 474 x + 208$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ | |
|
\(2593\)
| $\Q_{2593}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2593}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $6$ | $2$ | $3$ | $3$ | ||||
|
\(34963\)
| $\Q_{34963}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{34963}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $8$ | $2$ | $4$ | $4$ | ||||
|
\(560233\)
| $\Q_{560233}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{560233}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $12$ | $2$ | $6$ | $6$ | ||||
|
\(1072255949\)
| $\Q_{1072255949}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{1072255949}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $3$ | $1$ | $2$ | ||||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
|
\(6488895781911832501\)
| $\Q_{6488895781911832501}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $3$ | $3$ | $1$ | $2$ | ||||
| Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ |