Properties

Label 13.1.673...625.1
Degree $13$
Signature $[1, 6]$
Discriminant $6.731\times 10^{29}$
Root discriminant \(197.00\)
Ramified primes $3,5,79$
Class number $13$ (GRH)
Class group [13] (GRH)
Galois group $D_{13}$ (as 13T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^13 - 3*x^12 - 87*x^11 + 736*x^10 - 1956*x^9 - 15927*x^8 + 216019*x^7 - 1196967*x^6 + 4265724*x^5 - 10045872*x^4 + 13521123*x^3 - 7227009*x^2 + 1336176*x + 150417)
 
gp: K = bnfinit(y^13 - 3*y^12 - 87*y^11 + 736*y^10 - 1956*y^9 - 15927*y^8 + 216019*y^7 - 1196967*y^6 + 4265724*y^5 - 10045872*y^4 + 13521123*y^3 - 7227009*y^2 + 1336176*y + 150417, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^13 - 3*x^12 - 87*x^11 + 736*x^10 - 1956*x^9 - 15927*x^8 + 216019*x^7 - 1196967*x^6 + 4265724*x^5 - 10045872*x^4 + 13521123*x^3 - 7227009*x^2 + 1336176*x + 150417);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^13 - 3*x^12 - 87*x^11 + 736*x^10 - 1956*x^9 - 15927*x^8 + 216019*x^7 - 1196967*x^6 + 4265724*x^5 - 10045872*x^4 + 13521123*x^3 - 7227009*x^2 + 1336176*x + 150417)
 

\( x^{13} - 3 x^{12} - 87 x^{11} + 736 x^{10} - 1956 x^{9} - 15927 x^{8} + 216019 x^{7} - 1196967 x^{6} + \cdots + 150417 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $13$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(673089242845163403360476390625\) \(\medspace = 3^{6}\cdot 5^{6}\cdot 79^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(197.00\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}5^{1/2}79^{12/13}\approx 218.62579719842265$
Ramified primes:   \(3\), \(5\), \(79\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{5}-\frac{1}{3}a^{2}$, $\frac{1}{9}a^{6}-\frac{4}{9}a^{3}+\frac{1}{3}a$, $\frac{1}{45}a^{7}-\frac{2}{45}a^{6}-\frac{2}{15}a^{5}+\frac{2}{45}a^{4}+\frac{14}{45}a^{3}-\frac{1}{15}a^{2}+\frac{7}{15}a+\frac{2}{5}$, $\frac{1}{135}a^{8}-\frac{1}{135}a^{7}-\frac{1}{45}a^{6}-\frac{4}{135}a^{5}-\frac{14}{135}a^{4}+\frac{17}{45}a^{3}+\frac{11}{45}a^{2}-\frac{4}{15}a-\frac{1}{5}$, $\frac{1}{1485}a^{9}+\frac{1}{297}a^{8}-\frac{2}{495}a^{7}+\frac{32}{1485}a^{6}-\frac{56}{1485}a^{5}-\frac{23}{165}a^{4}+\frac{7}{45}a^{3}+\frac{14}{55}a^{2}+\frac{1}{11}a-\frac{19}{55}$, $\frac{1}{51975}a^{10}-\frac{86}{51975}a^{8}-\frac{23}{3465}a^{7}+\frac{841}{17325}a^{6}-\frac{16}{2079}a^{5}-\frac{1114}{7425}a^{4}-\frac{502}{1155}a^{3}-\frac{2048}{17325}a^{2}-\frac{32}{105}a+\frac{502}{1925}$, $\frac{1}{155925}a^{11}+\frac{1}{155925}a^{10}+\frac{19}{155925}a^{9}+\frac{479}{155925}a^{8}-\frac{1147}{155925}a^{7}-\frac{2602}{155925}a^{6}+\frac{5189}{51975}a^{5}+\frac{2389}{51975}a^{4}+\frac{5149}{17325}a^{3}+\frac{461}{1925}a^{2}+\frac{697}{5775}a+\frac{144}{1925}$, $\frac{1}{33\!\cdots\!25}a^{12}+\frac{7345035024098}{33\!\cdots\!25}a^{11}+\frac{1090546606913}{47\!\cdots\!75}a^{10}+\frac{268610109160279}{11\!\cdots\!75}a^{9}+\frac{26\!\cdots\!26}{33\!\cdots\!25}a^{8}+\frac{31\!\cdots\!89}{33\!\cdots\!25}a^{7}-\frac{12\!\cdots\!52}{33\!\cdots\!25}a^{6}-\frac{60\!\cdots\!71}{36\!\cdots\!25}a^{5}-\frac{31725403619657}{220415376876975}a^{4}+\frac{54\!\cdots\!84}{12\!\cdots\!75}a^{3}+\frac{11\!\cdots\!23}{12\!\cdots\!75}a^{2}+\frac{26\!\cdots\!86}{12\!\cdots\!75}a+\frac{11\!\cdots\!28}{40\!\cdots\!25}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$, $5$

Class group and class number

$C_{13}$, which has order $13$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{91\!\cdots\!14}{11\!\cdots\!75}a^{12}-\frac{12\!\cdots\!68}{11\!\cdots\!75}a^{11}-\frac{39\!\cdots\!11}{52\!\cdots\!75}a^{10}+\frac{60\!\cdots\!62}{12\!\cdots\!75}a^{9}-\frac{81\!\cdots\!44}{11\!\cdots\!25}a^{8}-\frac{56\!\cdots\!33}{36\!\cdots\!25}a^{7}+\frac{17\!\cdots\!82}{11\!\cdots\!75}a^{6}-\frac{79\!\cdots\!76}{11\!\cdots\!75}a^{5}+\frac{57\!\cdots\!91}{269396571738525}a^{4}-\frac{15\!\cdots\!19}{40\!\cdots\!25}a^{3}+\frac{16\!\cdots\!96}{12\!\cdots\!75}a^{2}+\frac{52\!\cdots\!22}{12\!\cdots\!75}a+\frac{12\!\cdots\!66}{40\!\cdots\!25}$, $\frac{17\!\cdots\!36}{33\!\cdots\!25}a^{12}-\frac{12\!\cdots\!04}{11\!\cdots\!75}a^{11}-\frac{26\!\cdots\!17}{58\!\cdots\!75}a^{10}+\frac{11\!\cdots\!97}{33\!\cdots\!25}a^{9}-\frac{82\!\cdots\!58}{11\!\cdots\!75}a^{8}-\frac{97\!\cdots\!47}{11\!\cdots\!75}a^{7}+\frac{34\!\cdots\!83}{33\!\cdots\!25}a^{6}-\frac{22\!\cdots\!89}{40\!\cdots\!25}a^{5}+\frac{43\!\cdots\!31}{24\!\cdots\!25}a^{4}-\frac{12\!\cdots\!58}{33\!\cdots\!75}a^{3}+\frac{48\!\cdots\!83}{12\!\cdots\!75}a^{2}-\frac{42\!\cdots\!84}{12\!\cdots\!75}a-\frac{20\!\cdots\!02}{40\!\cdots\!25}$, $\frac{28\!\cdots\!21}{13\!\cdots\!85}a^{12}+\frac{37\!\cdots\!21}{66\!\cdots\!25}a^{11}-\frac{14\!\cdots\!44}{94\!\cdots\!75}a^{10}+\frac{45\!\cdots\!64}{66\!\cdots\!25}a^{9}-\frac{15\!\cdots\!02}{66\!\cdots\!25}a^{8}-\frac{23\!\cdots\!27}{66\!\cdots\!25}a^{7}+\frac{56\!\cdots\!77}{22\!\cdots\!75}a^{6}-\frac{23\!\cdots\!76}{22\!\cdots\!75}a^{5}+\frac{70\!\cdots\!23}{24\!\cdots\!25}a^{4}-\frac{11\!\cdots\!92}{24\!\cdots\!75}a^{3}+\frac{18\!\cdots\!33}{73\!\cdots\!25}a^{2}-\frac{40\!\cdots\!41}{81\!\cdots\!25}a-\frac{47\!\cdots\!17}{81\!\cdots\!25}$, $\frac{28\!\cdots\!23}{60\!\cdots\!75}a^{12}-\frac{96\!\cdots\!23}{66\!\cdots\!25}a^{11}-\frac{55\!\cdots\!37}{13\!\cdots\!25}a^{10}+\frac{21\!\cdots\!08}{60\!\cdots\!75}a^{9}-\frac{63\!\cdots\!01}{66\!\cdots\!25}a^{8}-\frac{45\!\cdots\!99}{60\!\cdots\!75}a^{7}+\frac{22\!\cdots\!37}{22\!\cdots\!75}a^{6}-\frac{12\!\cdots\!32}{22\!\cdots\!75}a^{5}+\frac{50\!\cdots\!11}{24\!\cdots\!25}a^{4}-\frac{36\!\cdots\!22}{73\!\cdots\!25}a^{3}+\frac{49\!\cdots\!73}{73\!\cdots\!25}a^{2}-\frac{31\!\cdots\!97}{81\!\cdots\!25}a+\frac{13\!\cdots\!98}{148576291080035}$, $\frac{14\!\cdots\!39}{25\!\cdots\!25}a^{12}-\frac{46\!\cdots\!83}{25\!\cdots\!25}a^{11}-\frac{18\!\cdots\!68}{36\!\cdots\!75}a^{10}+\frac{99\!\cdots\!43}{23\!\cdots\!75}a^{9}-\frac{27\!\cdots\!61}{25\!\cdots\!25}a^{8}-\frac{23\!\cdots\!44}{25\!\cdots\!25}a^{7}+\frac{10\!\cdots\!74}{84\!\cdots\!75}a^{6}-\frac{63\!\cdots\!03}{94\!\cdots\!75}a^{5}+\frac{57\!\cdots\!26}{24\!\cdots\!25}a^{4}-\frac{52\!\cdots\!64}{94\!\cdots\!75}a^{3}+\frac{21\!\cdots\!66}{28\!\cdots\!25}a^{2}-\frac{41\!\cdots\!81}{94\!\cdots\!75}a+\frac{32\!\cdots\!42}{31\!\cdots\!25}$, $\frac{29\!\cdots\!11}{33\!\cdots\!25}a^{12}-\frac{35\!\cdots\!57}{33\!\cdots\!25}a^{11}-\frac{37\!\cdots\!32}{47\!\cdots\!75}a^{10}+\frac{16\!\cdots\!17}{33\!\cdots\!25}a^{9}-\frac{22\!\cdots\!14}{33\!\cdots\!25}a^{8}-\frac{53\!\cdots\!76}{33\!\cdots\!25}a^{7}+\frac{18\!\cdots\!51}{11\!\cdots\!75}a^{6}-\frac{81\!\cdots\!83}{11\!\cdots\!75}a^{5}+\frac{57\!\cdots\!27}{269396571738525}a^{4}-\frac{12\!\cdots\!18}{36\!\cdots\!25}a^{3}+\frac{61\!\cdots\!28}{12\!\cdots\!75}a^{2}+\frac{66\!\cdots\!26}{12\!\cdots\!75}a+\frac{16\!\cdots\!58}{40\!\cdots\!25}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 22619543081.392696 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{6}\cdot 22619543081.392696 \cdot 13}{2\cdot\sqrt{673089242845163403360476390625}}\cr\approx \mathstrut & 22.0531212569358 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^13 - 3*x^12 - 87*x^11 + 736*x^10 - 1956*x^9 - 15927*x^8 + 216019*x^7 - 1196967*x^6 + 4265724*x^5 - 10045872*x^4 + 13521123*x^3 - 7227009*x^2 + 1336176*x + 150417)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^13 - 3*x^12 - 87*x^11 + 736*x^10 - 1956*x^9 - 15927*x^8 + 216019*x^7 - 1196967*x^6 + 4265724*x^5 - 10045872*x^4 + 13521123*x^3 - 7227009*x^2 + 1336176*x + 150417, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^13 - 3*x^12 - 87*x^11 + 736*x^10 - 1956*x^9 - 15927*x^8 + 216019*x^7 - 1196967*x^6 + 4265724*x^5 - 10045872*x^4 + 13521123*x^3 - 7227009*x^2 + 1336176*x + 150417);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^13 - 3*x^12 - 87*x^11 + 736*x^10 - 1956*x^9 - 15927*x^8 + 216019*x^7 - 1196967*x^6 + 4265724*x^5 - 10045872*x^4 + 13521123*x^3 - 7227009*x^2 + 1336176*x + 150417);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{13}$ (as 13T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 26
The 8 conjugacy class representatives for $D_{13}$
Character table for $D_{13}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 26
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.13.0.1}{13} }$ R R ${\href{/padicField/7.2.0.1}{2} }^{6}{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.2.0.1}{2} }^{6}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.2.0.1}{2} }^{6}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.13.0.1}{13} }$ ${\href{/padicField/19.13.0.1}{13} }$ ${\href{/padicField/23.13.0.1}{13} }$ ${\href{/padicField/29.2.0.1}{2} }^{6}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.13.0.1}{13} }$ ${\href{/padicField/37.2.0.1}{2} }^{6}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.2.0.1}{2} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.13.0.1}{13} }$ ${\href{/padicField/53.13.0.1}{13} }$ ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
\(79\) Copy content Toggle raw display 79.13.12.6$x^{13} + 1738$$13$$1$$12$$C_{13}$$[\ ]_{13}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.15.2t1.a.a$1$ $ 3 \cdot 5 $ \(\Q(\sqrt{-15}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.93615.13t2.a.f$2$ $ 3 \cdot 5 \cdot 79^{2}$ 13.1.673089242845163403360476390625.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.93615.13t2.a.b$2$ $ 3 \cdot 5 \cdot 79^{2}$ 13.1.673089242845163403360476390625.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.93615.13t2.a.e$2$ $ 3 \cdot 5 \cdot 79^{2}$ 13.1.673089242845163403360476390625.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.93615.13t2.a.c$2$ $ 3 \cdot 5 \cdot 79^{2}$ 13.1.673089242845163403360476390625.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.93615.13t2.a.a$2$ $ 3 \cdot 5 \cdot 79^{2}$ 13.1.673089242845163403360476390625.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.93615.13t2.a.d$2$ $ 3 \cdot 5 \cdot 79^{2}$ 13.1.673089242845163403360476390625.1 $D_{13}$ (as 13T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.