Group action invariants
| Degree $n$ : | $13$ | |
| Transitive number $t$ : | $2$ | |
| Group : | $D_{13}$ | |
| CHM label : | $D(13)=13:2$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
26T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1 $ | $13$ | $2$ | $( 2,13)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
| $ 13 $ | $2$ | $13$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)$ |
| $ 13 $ | $2$ | $13$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)$ |
| $ 13 $ | $2$ | $13$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)$ |
| $ 13 $ | $2$ | $13$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)$ |
| $ 13 $ | $2$ | $13$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)$ |
| $ 13 $ | $2$ | $13$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)$ |
Group invariants
| Order: | $26=2 \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [26, 1] |
| Character table: |
2 1 1 . . . . . .
13 1 . 1 1 1 1 1 1
1a 2a 13a 13b 13c 13d 13e 13f
2P 1a 1a 13b 13d 13f 13e 13c 13a
3P 1a 2a 13c 13f 13d 13a 13b 13e
5P 1a 2a 13e 13c 13b 13f 13a 13d
7P 1a 2a 13f 13a 13e 13b 13d 13c
11P 1a 2a 13b 13d 13f 13e 13c 13a
13P 1a 2a 1a 1a 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 1 1 1 1
X.3 2 . A C B D F E
X.4 2 . B E D A C F
X.5 2 . C D E F B A
X.6 2 . D F A B E C
X.7 2 . E A F C D B
X.8 2 . F B C E A D
A = E(13)^3+E(13)^10
B = E(13)^4+E(13)^9
C = E(13)^6+E(13)^7
D = E(13)+E(13)^12
E = E(13)^5+E(13)^8
F = E(13)^2+E(13)^11
|