Normalized defining polynomial
\( x^{13} - 3 x^{12} + 8 x^{11} - 23 x^{10} - 10 x^{9} + 14 x^{8} + 98 x^{7} + 269 x^{6} + 309 x^{5} + \cdots + 49 \)
Invariants
| Degree: | $13$ |
| |
| Signature: | $[1, 6]$ |
| |
| Discriminant: |
\(489163986649360075249\)
\(\medspace = 7^{6}\cdot 401^{6}\)
|
| |
| Root discriminant: | \(39.04\) |
| |
| Galois root discriminant: | $7^{1/2}401^{1/2}\approx 52.98112871579842$ | ||
| Ramified primes: |
\(7\), \(401\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{7}a^{9}-\frac{1}{7}a^{8}-\frac{2}{7}a^{7}+\frac{2}{7}a^{6}+\frac{3}{7}a^{5}-\frac{3}{7}a^{4}-\frac{2}{7}a^{3}+\frac{2}{7}a^{2}$, $\frac{1}{7}a^{10}-\frac{3}{7}a^{8}-\frac{2}{7}a^{6}+\frac{2}{7}a^{4}+\frac{2}{7}a^{2}$, $\frac{1}{427}a^{11}-\frac{29}{427}a^{10}-\frac{16}{427}a^{9}-\frac{103}{427}a^{8}+\frac{171}{427}a^{7}+\frac{123}{427}a^{6}+\frac{75}{427}a^{5}-\frac{19}{427}a^{4}+\frac{14}{61}a^{3}-\frac{4}{61}a^{2}-\frac{27}{61}a+\frac{28}{61}$, $\frac{1}{675202881395}a^{12}-\frac{11723827}{11068899695}a^{11}-\frac{5377361124}{675202881395}a^{10}+\frac{6819782229}{96457554485}a^{9}-\frac{142788197757}{675202881395}a^{8}+\frac{21593619867}{675202881395}a^{7}+\frac{7545472259}{135040576279}a^{6}+\frac{56710326179}{675202881395}a^{5}-\frac{6154245252}{675202881395}a^{4}+\frac{182041008699}{675202881395}a^{3}+\frac{310567263429}{675202881395}a^{2}+\frac{25170688678}{96457554485}a+\frac{9180320618}{96457554485}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{891455154}{135040576279}a^{12}-\frac{3695655077}{135040576279}a^{11}+\frac{9704245729}{135040576279}a^{10}-\frac{25456654394}{135040576279}a^{9}+\frac{3598843541}{135040576279}a^{8}+\frac{52722139079}{135040576279}a^{7}+\frac{28245553339}{135040576279}a^{6}+\frac{139888866884}{135040576279}a^{5}+\frac{5929856411}{19291510897}a^{4}-\frac{39719962448}{19291510897}a^{3}+\frac{31939281675}{19291510897}a^{2}-\frac{38051808218}{19291510897}a+\frac{8806762064}{19291510897}$, $\frac{2086741886}{96457554485}a^{12}-\frac{44674217509}{675202881395}a^{11}+\frac{106099209507}{675202881395}a^{10}-\frac{297509607124}{675202881395}a^{9}-\frac{245666695199}{675202881395}a^{8}+\frac{531283845619}{675202881395}a^{7}+\frac{44023894055}{19291510897}a^{6}+\frac{54518650108}{11068899695}a^{5}+\frac{3522895265711}{675202881395}a^{4}-\frac{1381062536137}{675202881395}a^{3}-\frac{1500239995637}{675202881395}a^{2}-\frac{67729049404}{96457554485}a+\frac{275490411451}{96457554485}$, $\frac{13681497061}{675202881395}a^{12}-\frac{44072363257}{675202881395}a^{11}+\frac{14612849648}{96457554485}a^{10}-\frac{278529739312}{675202881395}a^{9}-\frac{220588775387}{675202881395}a^{8}+\frac{644503264262}{675202881395}a^{7}+\frac{261364033257}{135040576279}a^{6}+\frac{385724500217}{96457554485}a^{5}+\frac{2068779394923}{675202881395}a^{4}-\frac{32384661586}{11068899695}a^{3}+\frac{207098360787}{96457554485}a^{2}+\frac{276592087958}{96457554485}a-\frac{34585685662}{96457554485}$, $\frac{8454489937}{675202881395}a^{12}-\frac{25227590644}{675202881395}a^{11}+\frac{63729384142}{675202881395}a^{10}-\frac{180443817179}{675202881395}a^{9}-\frac{118783113144}{675202881395}a^{8}+\frac{203827809069}{675202881395}a^{7}+\frac{170991624154}{135040576279}a^{6}+\frac{2113635577168}{675202881395}a^{5}+\frac{2327914974716}{675202881395}a^{4}+\frac{220960128908}{675202881395}a^{3}+\frac{569008799493}{675202881395}a^{2}-\frac{41301999189}{96457554485}a+\frac{155032519946}{96457554485}$, $\frac{31918681281}{675202881395}a^{12}-\frac{139699543632}{675202881395}a^{11}+\frac{384361175801}{675202881395}a^{10}-\frac{1024394768857}{675202881395}a^{9}+\frac{474584255818}{675202881395}a^{8}+\frac{1445901405117}{675202881395}a^{7}+\frac{244400338288}{135040576279}a^{6}+\frac{573214672702}{96457554485}a^{5}+\frac{4105263668}{11068899695}a^{4}-\frac{6911404108026}{675202881395}a^{3}+\frac{1147245289212}{96457554485}a^{2}-\frac{240365907102}{96457554485}a-\frac{90960130792}{96457554485}$, $\frac{76055023696}{675202881395}a^{12}-\frac{259279467182}{675202881395}a^{11}+\frac{718220812646}{675202881395}a^{10}-\frac{2038547955202}{675202881395}a^{9}+\frac{35240303713}{675202881395}a^{8}+\frac{163839753796}{96457554485}a^{7}+\frac{1293735605227}{135040576279}a^{6}+\frac{18031189495089}{675202881395}a^{5}+\frac{2468971081079}{96457554485}a^{4}+\frac{3822646370679}{675202881395}a^{3}+\frac{14390393186459}{675202881395}a^{2}-\frac{968825843762}{96457554485}a+\frac{2661038614618}{96457554485}$
|
| |
| Regulator: | \( 297132.5632297882 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{6}\cdot 297132.5632297882 \cdot 1}{2\cdot\sqrt{489163986649360075249}}\cr\approx \mathstrut & 0.826612982119755 \end{aligned}\]
Galois group
| A solvable group of order 26 |
| The 8 conjugacy class representatives for $D_{13}$ |
| Character table for $D_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | deg 26 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.13.0.1}{13} }$ | ${\href{/padicField/3.13.0.1}{13} }$ | ${\href{/padicField/5.2.0.1}{2} }^{6}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.13.0.1}{13} }$ | ${\href{/padicField/13.13.0.1}{13} }$ | ${\href{/padicField/17.13.0.1}{13} }$ | ${\href{/padicField/19.13.0.1}{13} }$ | ${\href{/padicField/23.2.0.1}{2} }^{6}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.13.0.1}{13} }$ | ${\href{/padicField/31.13.0.1}{13} }$ | ${\href{/padicField/37.2.0.1}{2} }^{6}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.13.0.1}{13} }$ | ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.2.0.1}{2} }^{6}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.13.0.1}{13} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(401\)
| $\Q_{401}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *26 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.2807.2t1.a.a | $1$ | $ 7 \cdot 401 $ | \(\Q(\sqrt{-2807}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *26 | 2.2807.13t2.a.f | $2$ | $ 7 \cdot 401 $ | 13.1.489163986649360075249.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
| *26 | 2.2807.13t2.a.b | $2$ | $ 7 \cdot 401 $ | 13.1.489163986649360075249.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
| *26 | 2.2807.13t2.a.e | $2$ | $ 7 \cdot 401 $ | 13.1.489163986649360075249.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
| *26 | 2.2807.13t2.a.c | $2$ | $ 7 \cdot 401 $ | 13.1.489163986649360075249.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
| *26 | 2.2807.13t2.a.a | $2$ | $ 7 \cdot 401 $ | 13.1.489163986649360075249.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
| *26 | 2.2807.13t2.a.d | $2$ | $ 7 \cdot 401 $ | 13.1.489163986649360075249.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |