Properties

Label 12.0.11284439629824.1
Degree $12$
Signature $[0, 6]$
Discriminant $1.128\times 10^{13}$
Root discriminant \(12.24\)
Ramified primes $2,3$
Class number $1$
Class group trivial
Galois group $A_4$ (as 12T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^9 + 18*x^8 - 18*x^7 + 14*x^6 - 30*x^5 + 45*x^4 - 52*x^3 + 42*x^2 - 18*x + 3)
 
Copy content gp:K = bnfinit(y^12 - 2*y^9 + 18*y^8 - 18*y^7 + 14*y^6 - 30*y^5 + 45*y^4 - 52*y^3 + 42*y^2 - 18*y + 3, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^9 + 18*x^8 - 18*x^7 + 14*x^6 - 30*x^5 + 45*x^4 - 52*x^3 + 42*x^2 - 18*x + 3);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 2*x^9 + 18*x^8 - 18*x^7 + 14*x^6 - 30*x^5 + 45*x^4 - 52*x^3 + 42*x^2 - 18*x + 3)
 

\( x^{12} - 2x^{9} + 18x^{8} - 18x^{7} + 14x^{6} - 30x^{5} + 45x^{4} - 52x^{3} + 42x^{2} - 18x + 3 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $12$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(11284439629824\) \(\medspace = 2^{18}\cdot 3^{16}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(12.24\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{4/3}\approx 12.237893415933033$
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $A_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{3}$, $\frac{1}{9}a^{10}+\frac{1}{9}a^{9}+\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{5}+\frac{2}{9}a^{4}+\frac{2}{9}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{10233}a^{11}+\frac{209}{10233}a^{10}-\frac{662}{10233}a^{9}+\frac{497}{3411}a^{8}+\frac{1549}{3411}a^{7}-\frac{310}{3411}a^{6}+\frac{71}{10233}a^{5}+\frac{4576}{10233}a^{4}-\frac{2062}{10233}a^{3}+\frac{81}{379}a^{2}-\frac{1120}{3411}a+\frac{1273}{3411}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

Ideal class group:  Trivial group, which has order $1$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $5$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{1818}{379}a^{11}+\frac{6763}{3411}a^{10}+\frac{2071}{3411}a^{9}-\frac{10901}{1137}a^{8}+\frac{93484}{1137}a^{7}-\frac{19729}{379}a^{6}+\frac{48029}{1137}a^{5}-\frac{432514}{3411}a^{4}+\frac{553097}{3411}a^{3}-\frac{203134}{1137}a^{2}+\frac{140956}{1137}a-\frac{35882}{1137}$, $\frac{7795}{10233}a^{11}+\frac{10067}{10233}a^{10}+\frac{8512}{10233}a^{9}-\frac{3055}{3411}a^{8}+\frac{41584}{3411}a^{7}+\frac{8771}{3411}a^{6}+\frac{69083}{10233}a^{5}-\frac{139895}{10233}a^{4}+\frac{127823}{10233}a^{3}-\frac{17491}{1137}a^{2}+\frac{9719}{3411}a+\frac{4984}{3411}$, $\frac{52877}{10233}a^{11}+\frac{12160}{10233}a^{10}-\frac{2029}{10233}a^{9}-\frac{37133}{3411}a^{8}+\frac{307394}{3411}a^{7}-\frac{244196}{3411}a^{6}+\frac{493351}{10233}a^{5}-\frac{1473370}{10233}a^{4}+\frac{1996813}{10233}a^{3}-\frac{243065}{1137}a^{2}+\frac{540754}{3411}a-\frac{154885}{3411}$, $\frac{47557}{10233}a^{11}+\frac{40691}{10233}a^{10}+\frac{28084}{10233}a^{9}-\frac{26278}{3411}a^{8}+\frac{261073}{3411}a^{7}-\frac{58315}{3411}a^{6}+\frac{408977}{10233}a^{5}-\frac{1085666}{10233}a^{4}+\frac{1163456}{10233}a^{3}-\frac{49309}{379}a^{2}+\frac{244517}{3411}a-\frac{32477}{3411}$, $\frac{16381}{10233}a^{11}+\frac{27410}{10233}a^{10}+\frac{27772}{10233}a^{9}-\frac{2974}{3411}a^{8}+\frac{86152}{3411}a^{7}+\frac{52034}{3411}a^{6}+\frac{197738}{10233}a^{5}-\frac{209888}{10233}a^{4}+\frac{184568}{10233}a^{3}-\frac{25447}{1137}a^{2}-\frac{8047}{3411}a+\frac{16351}{3411}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 90.7922965712 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 90.7922965712 \cdot 1}{2\cdot\sqrt{11284439629824}}\cr\approx \mathstrut & 0.831492272362 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^9 + 18*x^8 - 18*x^7 + 14*x^6 - 30*x^5 + 45*x^4 - 52*x^3 + 42*x^2 - 18*x + 3) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^12 - 2*x^9 + 18*x^8 - 18*x^7 + 14*x^6 - 30*x^5 + 45*x^4 - 52*x^3 + 42*x^2 - 18*x + 3, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^9 + 18*x^8 - 18*x^7 + 14*x^6 - 30*x^5 + 45*x^4 - 52*x^3 + 42*x^2 - 18*x + 3); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^9 + 18*x^8 - 18*x^7 + 14*x^6 - 30*x^5 + 45*x^4 - 52*x^3 + 42*x^2 - 18*x + 3); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$A_4$ (as 12T4):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 12
The 4 conjugacy class representatives for $A_4$
Character table for $A_4$

Intermediate fields

\(\Q(\zeta_{9})^+\), 4.0.5184.1 x4, 6.2.419904.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 4 sibling: 4.0.5184.1
Degree 6 sibling: 6.2.419904.1
Minimal sibling: 4.0.5184.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.3.0.1}{3} }^{4}$ ${\href{/padicField/7.3.0.1}{3} }^{4}$ ${\href{/padicField/11.3.0.1}{3} }^{4}$ ${\href{/padicField/13.3.0.1}{3} }^{4}$ ${\href{/padicField/17.2.0.1}{2} }^{6}$ ${\href{/padicField/19.2.0.1}{2} }^{6}$ ${\href{/padicField/23.3.0.1}{3} }^{4}$ ${\href{/padicField/29.3.0.1}{3} }^{4}$ ${\href{/padicField/31.3.0.1}{3} }^{4}$ ${\href{/padicField/37.2.0.1}{2} }^{6}$ ${\href{/padicField/41.3.0.1}{3} }^{4}$ ${\href{/padicField/43.3.0.1}{3} }^{4}$ ${\href{/padicField/47.3.0.1}{3} }^{4}$ ${\href{/padicField/53.2.0.1}{2} }^{6}$ ${\href{/padicField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.4.18a4.1$x^{12} + 4 x^{10} + 6 x^{9} + 6 x^{8} + 18 x^{7} + 18 x^{6} + 18 x^{5} + 29 x^{4} + 20 x^{3} + 14 x^{2} + 14 x + 7$$4$$3$$18$$A_4$$$[2, 2]^{3}$$
\(3\) Copy content Toggle raw display 3.1.3.4a2.1$x^{3} + 6 x^{2} + 3$$3$$1$$4$$C_3$$$[2]$$
3.1.3.4a2.1$x^{3} + 6 x^{2} + 3$$3$$1$$4$$C_3$$$[2]$$
3.1.3.4a2.1$x^{3} + 6 x^{2} + 3$$3$$1$$4$$C_3$$$[2]$$
3.1.3.4a2.1$x^{3} + 6 x^{2} + 3$$3$$1$$4$$C_3$$$[2]$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)