Properties

Label 2.3.4.18a4.1
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(18\)
Galois group $A_4$ (as 12T4)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + x + 1 )^{4} + 2 ( x^{3} + x + 1 )^{3} + 2 ( x^{3} + x + 1 )^{2} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification index $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: $A_4$
This field is Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2]$
Visible Swan slopes:$[1,1]$
Means:$\langle\frac{1}{2}, \frac{3}{4}\rangle$
Rams:$(1, 1)$
Jump set:$[1, 2, 7]$
Roots of unity:$14 = (2^{ 3 } - 1) \cdot 2$

Intermediate fields

2.3.1.0a1.1, 2.1.4.6a2.1 x4, 2.3.2.6a3.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.3.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 2 x^{3} + 2 x^{2} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + (t^2 + t + 1) z + (t^2 + t)$
Associated inertia:$1$
Indices of inseparability:$[3, 2, 0]$

Invariants of the Galois closure

Galois degree: $12$
Galois group: $A_4$ (as 12T4)
Inertia group: Intransitive group isomorphic to $C_2^2$
Wild inertia group: $C_2^2$
Galois unramified degree: $3$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2]$
Galois Swan slopes: $[1,1]$
Galois mean slope: $1.5$
Galois splitting model:$x^{12} - 2 x^{11} - 4 x^{10} + 6 x^{9} + 18 x^{8} - 24 x^{7} - 18 x^{6} + 12 x^{5} + 57 x^{4} - 76 x^{3} + 40 x^{2} - 10 x + 1$