Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $A_4$ | |
| CHM label : | $A_{4}(12)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,5)(2,4,3)(6,8,7)(10,12,11), (1,11,6)(2,9,7)(3,10,5)(4,8,12) | |
| $|\Aut(F/K)|$: | $12$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: $A_4$
Degree 6: $A_4$
Low degree siblings
4T4, 6T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 2,12)( 3, 7,11)( 4, 5, 6)( 8, 9,10)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3, 8)( 2,10, 6)( 4, 9,11)( 5, 7,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
Group invariants
| Order: | $12=2^{2} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [12, 3] |
| Character table: |
2 2 . . 2
3 1 1 1 .
1a 3a 3b 2a
2P 1a 3b 3a 1a
3P 1a 1a 1a 2a
X.1 1 1 1 1
X.2 1 A /A 1
X.3 1 /A A 1
X.4 3 . . -1
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|