Show commands: Magma
Group invariants
| Abstract group: | $A_4$ |
| |
| Order: | $12=2^{2} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $12$ |
| |
| Transitive number $t$: | $4$ |
| |
| CHM label: | $A_{4}(12)$ | ||
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $12$ |
| |
| Generators: | $(1,9,5)(2,4,3)(6,8,7)(10,12,11)$, $(1,11,6)(2,9,7)(3,10,5)(4,8,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: $A_4$
Degree 6: $A_4$
Low degree siblings
4T4, 6T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6}$ | $3$ | $2$ | $6$ | $( 1,10)( 2, 5)( 3,12)( 4, 7)( 6, 9)( 8,11)$ |
| 3A1 | $3^{4}$ | $4$ | $3$ | $8$ | $( 1, 9, 5)( 2, 4, 3)( 6, 8, 7)(10,12,11)$ |
| 3A-1 | $3^{4}$ | $4$ | $3$ | $8$ | $( 1, 5, 9)( 2, 3, 4)( 6, 7, 8)(10,11,12)$ |
Malle's constant $a(G)$: $1/6$
Character table
| 1A | 2A | 3A1 | 3A-1 | ||
| Size | 1 | 3 | 4 | 4 | |
| 2 P | 1A | 1A | 3A-1 | 3A1 | |
| 3 P | 1A | 2A | 1A | 1A | |
| Type | |||||
| 12.3.1a | R | ||||
| 12.3.1b1 | C | ||||
| 12.3.1b2 | C | ||||
| 12.3.3a | R |
Regular extensions
Data not computed