Normalized defining polynomial
\( x^{11} - 154 x^{9} - 682 x^{8} + 5280 x^{7} + 89584 x^{6} + 490138 x^{5} + 967560 x^{4} + 280247 x^{3} + \cdots - 42294 \)
Invariants
| Degree: | $11$ |
| |
| Signature: | $[3, 4]$ |
| |
| Discriminant: |
\(1600360964975929118818369536\)
\(\medspace = 2^{16}\cdot 3^{12}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(297.24\) |
| |
| Galois root discriminant: | $2^{11/6}3^{4/3}11^{84/55}\approx 600.5382094683642$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{12}a^{7}-\frac{1}{12}a^{6}-\frac{1}{4}a^{5}+\frac{1}{12}a^{4}+\frac{1}{6}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{24}a^{8}-\frac{1}{24}a^{7}-\frac{1}{12}a^{5}+\frac{5}{24}a^{4}+\frac{3}{8}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{336}a^{9}+\frac{1}{84}a^{8}+\frac{5}{336}a^{7}-\frac{1}{56}a^{6}+\frac{1}{48}a^{5}-\frac{59}{168}a^{4}+\frac{107}{336}a^{3}+\frac{25}{56}a^{2}-\frac{5}{14}a-\frac{3}{8}$, $\frac{1}{26\cdots 48}a^{10}+\frac{26\cdots 89}{13\cdots 24}a^{9}-\frac{16\cdots 25}{88\cdots 16}a^{8}+\frac{14\cdots 47}{66\cdots 12}a^{7}-\frac{25\cdots 45}{26\cdots 48}a^{6}+\frac{17\cdots 53}{73\cdots 68}a^{5}-\frac{10\cdots 31}{37\cdots 64}a^{4}+\frac{12\cdots 65}{66\cdots 12}a^{3}-\frac{80\cdots 61}{31\cdots 72}a^{2}+\frac{11\cdots 19}{44\cdots 08}a-\frac{12\cdots 91}{31\cdots 72}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$, $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{45\cdots 45}{26\cdots 48}a^{10}-\frac{21\cdots 59}{13\cdots 24}a^{9}-\frac{11\cdots 89}{88\cdots 16}a^{8}+\frac{50\cdots 21}{66\cdots 12}a^{7}+\frac{23\cdots 91}{26\cdots 48}a^{6}+\frac{15\cdots 19}{22\cdots 04}a^{5}+\frac{55\cdots 69}{37\cdots 64}a^{4}+\frac{30\cdots 49}{66\cdots 12}a^{3}-\frac{41\cdots 65}{31\cdots 72}a^{2}+\frac{65\cdots 59}{44\cdots 08}a-\frac{20\cdots 87}{31\cdots 72}$, $\frac{43\cdots 81}{22\cdots 04}a^{10}-\frac{15\cdots 89}{14\cdots 36}a^{9}-\frac{55\cdots 85}{22\cdots 04}a^{8}-\frac{15\cdots 99}{44\cdots 08}a^{7}+\frac{11\cdots 27}{11\cdots 02}a^{6}+\frac{53\cdots 87}{44\cdots 08}a^{5}+\frac{17\cdots 55}{52\cdots 62}a^{4}+\frac{80\cdots 07}{44\cdots 08}a^{3}-\frac{40\cdots 73}{10\cdots 24}a^{2}+\frac{13\cdots 47}{36\cdots 34}a-\frac{16\cdots 83}{10\cdots 24}$, $\frac{93\cdots 69}{13\cdots 24}a^{10}+\frac{76\cdots 25}{66\cdots 12}a^{9}+\frac{63\cdots 23}{11\cdots 02}a^{8}-\frac{99\cdots 05}{13\cdots 24}a^{7}-\frac{38\cdots 31}{13\cdots 24}a^{6}-\frac{89\cdots 35}{55\cdots 51}a^{5}-\frac{75\cdots 54}{23\cdots 79}a^{4}-\frac{11\cdots 97}{13\cdots 24}a^{3}+\frac{59\cdots 59}{22\cdots 98}a^{2}-\frac{34\cdots 87}{11\cdots 02}a+\frac{43\cdots 79}{31\cdots 72}$, $\frac{67\cdots 69}{26\cdots 48}a^{10}-\frac{72\cdots 53}{33\cdots 06}a^{9}-\frac{59\cdots 75}{29\cdots 72}a^{8}+\frac{16\cdots 43}{13\cdots 24}a^{7}+\frac{35\cdots 75}{26\cdots 48}a^{6}+\frac{49\cdots 85}{44\cdots 08}a^{5}+\frac{10\cdots 81}{37\cdots 64}a^{4}+\frac{15\cdots 97}{13\cdots 24}a^{3}-\frac{21\cdots 46}{78\cdots 93}a^{2}+\frac{12\cdots 63}{44\cdots 08}a-\frac{19\cdots 09}{15\cdots 86}$, $\frac{50\cdots 31}{88\cdots 16}a^{10}-\frac{34\cdots 63}{29\cdots 72}a^{9}-\frac{76\cdots 87}{88\cdots 16}a^{8}-\frac{18\cdots 97}{88\cdots 16}a^{7}+\frac{31\cdots 23}{88\cdots 16}a^{6}+\frac{39\cdots 43}{88\cdots 16}a^{5}+\frac{78\cdots 33}{41\cdots 96}a^{4}+\frac{11\cdots 69}{88\cdots 16}a^{3}-\frac{44\cdots 43}{20\cdots 48}a^{2}+\frac{25\cdots 99}{14\cdots 36}a+\frac{31\cdots 41}{20\cdots 48}$, $\frac{34\cdots 51}{66\cdots 12}a^{10}-\frac{72\cdots 93}{26\cdots 48}a^{9}-\frac{14\cdots 33}{22\cdots 04}a^{8}-\frac{19\cdots 25}{26\cdots 48}a^{7}+\frac{36\cdots 09}{13\cdots 24}a^{6}+\frac{27\cdots 11}{88\cdots 16}a^{5}+\frac{23\cdots 11}{26\cdots 76}a^{4}+\frac{12\cdots 65}{26\cdots 48}a^{3}-\frac{61\cdots 23}{62\cdots 44}a^{2}+\frac{10\cdots 33}{11\cdots 02}a-\frac{27\cdots 49}{62\cdots 44}$
|
| |
| Regulator: | \( 189384639234 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{4}\cdot 189384639234 \cdot 1}{2\cdot\sqrt{1600360964975929118818369536}}\cr\approx \mathstrut & 29.5131279627560 \end{aligned}\] (assuming GRH)
Galois group
$\PSL(2,11)$ (as 11T5):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | 12.0.8296271242435216551954427674624.1 |
| Arithmetically equivalent sibling: | 11.3.1600360964975929118818369536.3 |
| Minimal sibling: | 11.3.1600360964975929118818369536.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.5.0.1}{5} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.2.0.1}{2} }^{4}{,}\,{\href{/padicField/7.1.0.1}{1} }^{3}$ | R | ${\href{/padicField/13.5.0.1}{5} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.11.0.1}{11} }$ | ${\href{/padicField/19.3.0.1}{3} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.5.0.1}{5} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.5.0.1}{5} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.11.0.1}{11} }$ | ${\href{/padicField/47.11.0.1}{11} }$ | ${\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.3.0.1}{3} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.1.6.11a1.6 | $x^{6} + 4 x^{3} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ | |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.1.3.4a2.3 | $x^{3} + 6 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
| 3.1.3.4a2.3 | $x^{3} + 6 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
| 3.1.3.4a2.3 | $x^{3} + 6 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
|
\(11\)
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |