Normalized defining polynomial
\( x^{10} - 10x^{8} - 5x^{6} - 64x^{5} - 100x^{3} - 105x^{2} + 120x + 64 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[6, 2]$ |
| |
| Discriminant: |
\(1296000000000000\)
\(\medspace = 2^{16}\cdot 3^{4}\cdot 5^{12}\)
|
| |
| Root discriminant: | \(32.45\) |
| |
| Galois root discriminant: | $2^{19/8}3^{1/2}5^{271/200}\approx 79.54469536351158$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{225370104}a^{9}-\frac{13217074}{28171263}a^{8}+\frac{9831945}{37561684}a^{7}-\frac{3452757}{9390421}a^{6}-\frac{34614389}{225370104}a^{5}-\frac{1338601}{9390421}a^{4}-\frac{3503960}{9390421}a^{3}+\frac{4987187}{56342526}a^{2}+\frac{96543191}{225370104}a+\frac{12963664}{28171263}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{6095}{831624}a^{9}-\frac{539}{103953}a^{8}-\frac{11833}{138604}a^{7}+\frac{3264}{34651}a^{6}-\frac{8395}{831624}a^{5}-\frac{21890}{34651}a^{4}+\frac{22536}{34651}a^{3}-\frac{199871}{207906}a^{2}+\frac{218713}{831624}a+\frac{208169}{103953}$, $\frac{1844125}{75123368}a^{9}-\frac{205493}{9390421}a^{8}-\frac{6923125}{37561684}a^{7}+\frac{938220}{9390421}a^{6}-\frac{32844609}{75123368}a^{5}-\frac{9261198}{9390421}a^{4}-\frac{1819019}{9390421}a^{3}-\frac{57224393}{18780842}a^{2}-\frac{87531677}{75123368}a+\frac{4180729}{9390421}$, $\frac{2249125}{225370104}a^{9}+\frac{411347}{28171263}a^{8}-\frac{3744671}{37561684}a^{7}-\frac{1119466}{9390421}a^{6}-\frac{13563761}{225370104}a^{5}-\frac{8706894}{9390421}a^{4}-\frac{8334118}{9390421}a^{3}-\frac{88484809}{56342526}a^{2}-\frac{981863629}{225370104}a-\frac{18355844}{28171263}$, $\frac{3609559}{225370104}a^{9}+\frac{110030}{28171263}a^{8}-\frac{7152941}{37561684}a^{7}-\frac{914647}{9390421}a^{6}+\frac{27242005}{225370104}a^{5}-\frac{2675198}{9390421}a^{4}+\frac{10492419}{9390421}a^{3}-\frac{4021519}{56342526}a^{2}-\frac{179347231}{225370104}a-\frac{5717873}{28171263}$, $\frac{701057}{225370104}a^{9}+\frac{551164}{28171263}a^{8}-\frac{2956555}{37561684}a^{7}-\frac{1252558}{9390421}a^{6}+\frac{66239027}{225370104}a^{5}-\frac{3878622}{9390421}a^{4}-\frac{7285067}{9390421}a^{3}+\frac{23248255}{56342526}a^{2}+\frac{31700023}{225370104}a-\frac{7421056}{28171263}$, $\frac{2228885}{225370104}a^{9}-\frac{324341}{28171263}a^{8}-\frac{509639}{37561684}a^{7}-\frac{830868}{9390421}a^{6}-\frac{93983737}{225370104}a^{5}+\frac{2603182}{9390421}a^{4}-\frac{14033531}{9390421}a^{3}-\frac{63343097}{56342526}a^{2}-\frac{381137477}{225370104}a-\frac{15771622}{28171263}$, $\frac{31350653}{225370104}a^{9}-\frac{5025650}{28171263}a^{8}-\frac{43997035}{37561684}a^{7}+\frac{13392979}{9390421}a^{6}-\frac{504653953}{225370104}a^{5}-\frac{54979875}{9390421}a^{4}+\frac{67767791}{9390421}a^{3}-\frac{1137925403}{56342526}a^{2}+\frac{2234167867}{225370104}a+\frac{267468917}{28171263}$
|
| |
| Regulator: | \( 15975.978276 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{2}\cdot 15975.978276 \cdot 1}{2\cdot\sqrt{1296000000000000}}\cr\approx \mathstrut & 0.56062785957 \end{aligned}\] (assuming GRH)
Galois group
$A_5^2:C_4$ (as 10T42):
| A non-solvable group of order 14400 |
| The 22 conjugacy class representatives for $A_5^2 : C_4$ |
| Character table for $A_5^2 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.5.0.1}{5} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.5.0.1}{5} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 2.2.4.16b5.8 | $x^{8} + 8 x^{7} + 24 x^{6} + 48 x^{5} + 63 x^{4} + 64 x^{3} + 46 x^{2} + 24 x + 13$ | $4$ | $2$ | $16$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $$[2, 2, 2, 3]^{4}$$ | |
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.4.2.4a1.1 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 3 x + 4$ | $2$ | $4$ | $4$ | $C_8$ | $$[\ ]_{2}^{4}$$ | |
|
\(5\)
| 5.1.10.12a1.1 | $x^{10} + 5 x^{3} + 5$ | $10$ | $1$ | $12$ | $(C_5^2 : C_8):C_2$ | $$[\frac{11}{8}, \frac{11}{8}]_{8}^{2}$$ |