Properties

Label 10T42
Order \(14400\)
n \(10\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No
Group: $A_5^2 : C_4$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $10$
Transitive number $t$ :  $42$
Group :  $A_5^2 : C_4$
CHM label :  $1/2[S(5)^{2}]2$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (2,4,6,8,10), (1,6)(2,5,10,7)(3,8)(4,9)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
4:  $C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 5: None

Low degree siblings

12T278, 20T457, 20T461, 24T12116, 25T100, 30T817, 36T9861, 40T10509, 40T10510, 40T10511

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1, 1, 1, 1 $ $100$ $2$ $( 1, 3)( 6, 8)$
$ 2, 2, 2, 2, 1, 1 $ $225$ $2$ $( 1, 3)( 2,10)( 5, 7)( 6, 8)$
$ 3, 3, 1, 1, 1, 1 $ $400$ $3$ $( 1, 3, 5)( 2, 6, 8)$
$ 3, 3, 2, 2 $ $400$ $6$ $( 1, 3, 5)( 2, 6, 8)( 4,10)( 7, 9)$
$ 4, 4, 1, 1 $ $900$ $4$ $( 1, 3, 5, 7)( 2,10, 6, 8)$
$ 5, 5 $ $576$ $5$ $( 1, 3, 5, 7, 9)( 2,10, 4, 6, 8)$
$ 2, 2, 1, 1, 1, 1, 1, 1 $ $30$ $2$ $( 2,10)( 6, 8)$
$ 3, 1, 1, 1, 1, 1, 1, 1 $ $40$ $3$ $( 2, 6, 8)$
$ 5, 1, 1, 1, 1, 1 $ $48$ $5$ $( 2,10, 4, 6, 8)$
$ 3, 2, 2, 1, 1, 1 $ $400$ $6$ $( 1, 3)( 2, 6, 8)( 4,10)$
$ 4, 2, 1, 1, 1, 1 $ $600$ $4$ $( 1, 3)( 2,10, 6, 8)$
$ 3, 2, 2, 1, 1, 1 $ $600$ $6$ $( 1, 3)( 2, 6, 8)( 5, 7)$
$ 5, 2, 2, 1 $ $720$ $10$ $( 1, 3)( 2,10, 4, 6, 8)( 5, 7)$
$ 5, 3, 1, 1 $ $960$ $15$ $( 1, 3, 5)( 2,10, 4, 6, 8)$
$ 4, 3, 2, 1 $ $1200$ $12$ $( 1, 3, 5)( 2,10, 6, 8)( 7, 9)$
$ 4, 2, 2, 2 $ $600$ $4$ $( 1, 6)( 2, 5)( 3, 8)( 4, 7,10, 9)$
$ 6, 4 $ $1200$ $12$ $( 1, 8, 3, 2, 5, 6)( 4, 7,10, 9)$
$ 8, 2 $ $1800$ $8$ $( 1, 4, 7, 8, 3,10, 9, 6)( 2, 5)$
$ 4, 2, 2, 2 $ $600$ $4$ $( 1, 6)( 2, 5)( 3, 8)( 4, 9,10, 7)$
$ 6, 4 $ $1200$ $12$ $( 1, 8, 3, 2, 5, 6)( 4, 9,10, 7)$
$ 8, 2 $ $1800$ $8$ $( 1,10, 7, 8, 3, 4, 9, 6)( 2, 5)$

Group invariants

Order:  $14400=2^{6} \cdot 3^{2} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.