Properties

Label 5.1.10.12a1.1
Base \(\Q_{5}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(12\)
Galois group $(C_5^2 : C_8):C_2$ (as 10T28)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 5 x^{3} + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $10$
Ramification index $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{5}$
Root number: $1$
$\Aut(K/\Q_{5})$: $C_1$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[\frac{11}{8}]$
Visible Swan slopes:$[\frac{3}{8}]$
Means:$\langle\frac{3}{10}\rangle$
Rams:$(\frac{3}{4})$
Jump set:undefined
Roots of unity:$4 = (5 - 1)$

Intermediate fields

$\Q_{5}(\sqrt{5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{10} + 5 x^{3} + 5 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^5 + 2$,$2 z + 2$
Associated inertia:$1$,$1$
Indices of inseparability:$[3, 0]$

Invariants of the Galois closure

Galois degree: $400$
Galois group: $C_5^2:\OD_{16}$ (as 10T28)
Inertia group: $C_5^2:C_8$ (as 10T18)
Wild inertia group: $C_5^2$
Galois unramified degree: $2$
Galois tame degree: $8$
Galois Artin slopes: $[\frac{11}{8}, \frac{11}{8}]$
Galois Swan slopes: $[\frac{3}{8},\frac{3}{8}]$
Galois mean slope: $1.355$
Galois splitting model:$x^{10} - 5 x^{9} + 5 x^{8} + 25 x^{6} - 53 x^{5} + 55 x^{4} - 110 x^{3} + 95 x^{2} - 25 x - 19$