Normalized defining polynomial
\( x^{10} - 2x^{9} - 22x^{8} + 38x^{7} + 142x^{6} - 194x^{5} - 265x^{4} + 236x^{3} + 66x^{2} - 24x + 1 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[10, 0]$ |
| |
| Discriminant: |
\(53339349076992\)
\(\medspace = 2^{10}\cdot 3^{5}\cdot 11^{8}\)
|
| |
| Root discriminant: | \(23.59\) |
| |
| Galois root discriminant: | $2\cdot 3^{1/2}11^{4/5}\approx 23.588741500303293$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{10}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(132=2^{2}\cdot 3\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{132}(1,·)$, $\chi_{132}(37,·)$, $\chi_{132}(97,·)$, $\chi_{132}(71,·)$, $\chi_{132}(47,·)$, $\chi_{132}(49,·)$, $\chi_{132}(119,·)$, $\chi_{132}(23,·)$, $\chi_{132}(25,·)$, $\chi_{132}(59,·)$$\rbrace$ | ||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{114037043}a^{9}-\frac{20513415}{114037043}a^{8}+\frac{44154083}{114037043}a^{7}+\frac{19627688}{114037043}a^{6}-\frac{54384816}{114037043}a^{5}-\frac{42131864}{114037043}a^{4}+\frac{51795533}{114037043}a^{3}+\frac{40166675}{114037043}a^{2}+\frac{16898610}{114037043}a+\frac{40736844}{114037043}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{9284712}{114037043}a^{9}-\frac{16341213}{114037043}a^{8}-\frac{207676012}{114037043}a^{7}+\frac{305665620}{114037043}a^{6}+\frac{1374300256}{114037043}a^{5}-\frac{1524845483}{114037043}a^{4}-\frac{2656429180}{114037043}a^{3}+\frac{1808020130}{114037043}a^{2}+\frac{633364684}{114037043}a-\frac{103263419}{114037043}$, $\frac{12066792}{114037043}a^{9}-\frac{25738020}{114037043}a^{8}-\frac{263014800}{114037043}a^{7}+\frac{492189497}{114037043}a^{6}+\frac{1673684946}{114037043}a^{5}-\frac{2538320967}{114037043}a^{4}-\frac{3056330286}{114037043}a^{3}+\frac{3128546172}{114037043}a^{2}+\frac{778852218}{114037043}a-\frac{264715546}{114037043}$, $\frac{2300302}{114037043}a^{9}-\frac{3639489}{114037043}a^{8}-\frac{51137142}{114037043}a^{7}+\frac{63897216}{114037043}a^{6}+\frac{328193772}{114037043}a^{5}-\frac{261584862}{114037043}a^{4}-\frac{534375434}{114037043}a^{3}+\frac{47745261}{114037043}a^{2}-\frac{128541276}{114037043}a+\frac{68604756}{114037043}$, $\frac{5458558}{114037043}a^{9}-\frac{8811612}{114037043}a^{8}-\frac{123536358}{114037043}a^{7}+\frac{159159060}{114037043}a^{6}+\frac{838623132}{114037043}a^{5}-\frac{718674012}{114037043}a^{4}-\frac{1751243970}{114037043}a^{3}+\frac{514986345}{114037043}a^{2}+\frac{671758884}{114037043}a+\frac{60416919}{114037043}$, $\frac{7310593}{114037043}a^{9}-\frac{16448644}{114037043}a^{8}-\frac{153629366}{114037043}a^{7}+\frac{306292245}{114037043}a^{6}+\frac{903967107}{114037043}a^{5}-\frac{1471040846}{114037043}a^{4}-\frac{1317448442}{114037043}a^{3}+\frac{1388844995}{114037043}a^{2}+\frac{136515927}{114037043}a-\frac{216169126}{114037043}$, $\frac{15419846}{114037043}a^{9}-\frac{31101550}{114037043}a^{8}-\frac{338285014}{114037043}a^{7}+\frac{587840661}{114037043}a^{6}+\frac{2172021838}{114037043}a^{5}-\frac{2952268879}{114037043}a^{4}-\frac{4034340913}{114037043}a^{3}+\frac{3332038461}{114037043}a^{2}+\frac{1259188791}{114037043}a-\frac{312877112}{114037043}$, $\frac{4690345}{114037043}a^{9}-\frac{1669344}{114037043}a^{8}-\frac{115844902}{114037043}a^{7}+\frac{5940019}{114037043}a^{6}+\frac{894055288}{114037043}a^{5}+\frac{217643018}{114037043}a^{4}-\frac{2290104068}{114037043}a^{3}-\frac{930153877}{114037043}a^{2}+\frac{1258961203}{114037043}a-\frac{125271664}{114037043}$, $\frac{2729279}{114037043}a^{9}-\frac{4405806}{114037043}a^{8}-\frac{61768179}{114037043}a^{7}+\frac{79579530}{114037043}a^{6}+\frac{419311566}{114037043}a^{5}-\frac{359337006}{114037043}a^{4}-\frac{875621985}{114037043}a^{3}+\frac{314511694}{114037043}a^{2}+\frac{335879442}{114037043}a-\frac{26810062}{114037043}$, $\frac{26810062}{114037043}a^{9}-\frac{50890845}{114037043}a^{8}-\frac{594227170}{114037043}a^{7}+\frac{957014177}{114037043}a^{6}+\frac{3886608334}{114037043}a^{5}-\frac{4781840462}{114037043}a^{4}-\frac{7464003436}{114037043}a^{3}+\frac{5451552647}{114037043}a^{2}+\frac{1969938743}{114037043}a-\frac{79487960}{114037043}$
|
| |
| Regulator: | \( 3410.56648978 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{0}\cdot 3410.56648978 \cdot 1}{2\cdot\sqrt{53339349076992}}\cr\approx \mathstrut & 0.239096173572 \end{aligned}\]
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.10.0.1}{10} }$ | ${\href{/padicField/7.10.0.1}{10} }$ | R | ${\href{/padicField/13.5.0.1}{5} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.10.0.1}{10} }$ | ${\href{/padicField/23.1.0.1}{1} }^{10}$ | ${\href{/padicField/29.10.0.1}{10} }$ | ${\href{/padicField/31.10.0.1}{10} }$ | ${\href{/padicField/37.5.0.1}{5} }^{2}$ | ${\href{/padicField/41.10.0.1}{10} }$ | ${\href{/padicField/43.2.0.1}{2} }^{5}$ | ${\href{/padicField/47.5.0.1}{5} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }$ | ${\href{/padicField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.5.2.10a1.2 | $x^{10} + 2 x^{7} + 4 x^{5} + x^{4} + 4 x^{2} + 9$ | $2$ | $5$ | $10$ | $C_{10}$ | $$[2]^{5}$$ |
|
\(3\)
| 3.5.2.5a1.1 | $x^{10} + 4 x^{6} + 2 x^{5} + 4 x^{2} + 7 x + 1$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ |
|
\(11\)
| 11.1.5.4a1.1 | $x^{5} + 11$ | $5$ | $1$ | $4$ | $C_5$ | $$[\ ]_{5}$$ |
| 11.1.5.4a1.1 | $x^{5} + 11$ | $5$ | $1$ | $4$ | $C_5$ | $$[\ ]_{5}$$ |