Properties

Label 2.5.2.10a1.2
Base \(\Q_{2}\)
Degree \(10\)
e \(2\)
f \(5\)
c \(10\)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{5} + x^{2} + 1 )^{2} + 2 ( x^{5} + x^{2} + 1 ) + 6$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $10$
Ramification index $e$: $2$
Residue field degree $f$: $5$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $i$
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: $C_{10}$
This field is Galois and abelian over $\Q_{2}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{1}{2}\rangle$
Rams:$(1)$
Jump set:$[1, 4]$
Roots of unity:$62 = (2^{ 5 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, 2.5.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.5.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{5} + x^{2} + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 2 x + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + t^4$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: $10$
Galois group: $C_{10}$ (as 10T1)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_2$
Galois unramified degree: $5$
Galois tame degree: $1$
Galois Artin slopes: $[2]$
Galois Swan slopes: $[1]$
Galois mean slope: $1.0$
Galois splitting model:$x^{10} - 11 x^{8} + 44 x^{6} - 77 x^{4} + 55 x^{2} - 11$