Normalized defining polynomial
\( x^{10} - x^{9} + 56 x^{8} - 56 x^{7} + 1156 x^{6} - 1156 x^{5} + 10781 x^{4} - 10781 x^{3} + \cdots + 79531 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[0, 5]$ |
| |
| Discriminant: |
\(-9630096522760791\)
\(\medspace = -\,3^{5}\cdot 7^{5}\cdot 11^{9}\)
|
| |
| Root discriminant: | \(39.66\) |
| |
| Galois root discriminant: | $3^{1/2}7^{1/2}11^{9/10}\approx 39.66094555677728$ | ||
| Ramified primes: |
\(3\), \(7\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-231}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{10}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(231=3\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{231}(64,·)$, $\chi_{231}(1,·)$, $\chi_{231}(230,·)$, $\chi_{231}(167,·)$, $\chi_{231}(41,·)$, $\chi_{231}(83,·)$, $\chi_{231}(148,·)$, $\chi_{231}(62,·)$, $\chi_{231}(169,·)$, $\chi_{231}(190,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | \(\Q(\sqrt{-231}) \), 10.0.9630096522760791.1$^{15}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{17621}a^{6}+\frac{1287}{17621}a^{5}+\frac{30}{17621}a^{4}-\frac{3067}{17621}a^{3}+\frac{225}{17621}a^{2}+\frac{2286}{17621}a+\frac{250}{17621}$, $\frac{1}{17621}a^{7}+\frac{35}{17621}a^{5}-\frac{6435}{17621}a^{4}+\frac{350}{17621}a^{3}-\frac{5353}{17621}a^{2}+\frac{875}{17621}a-\frac{4572}{17621}$, $\frac{1}{17621}a^{8}+\frac{1383}{17621}a^{5}-\frac{700}{17621}a^{4}-\frac{3734}{17621}a^{3}-\frac{7000}{17621}a^{2}+\frac{3523}{17621}a-\frac{8750}{17621}$, $\frac{1}{17621}a^{9}-\frac{900}{17621}a^{5}+\frac{7639}{17621}a^{4}+\frac{5621}{17621}a^{3}-\frac{8095}{17621}a^{2}+\frac{1492}{17621}a+\frac{6670}{17621}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{66}$, which has order $132$ |
| |
| Narrow class group: | $C_{2}\times C_{66}$, which has order $132$ |
| |
| Relative class number: | $132$ |
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{11}{17621}a^{7}+\frac{385}{17621}a^{5}-\frac{301}{17621}a^{4}+\frac{3850}{17621}a^{3}-\frac{6020}{17621}a^{2}+\frac{9625}{17621}a-\frac{15050}{17621}$, $\frac{1}{17621}a^{9}+\frac{45}{17621}a^{7}+\frac{675}{17621}a^{5}+\frac{3750}{17621}a^{3}-\frac{2286}{17621}a^{2}+\frac{5625}{17621}a-\frac{22860}{17621}$, $\frac{1}{17621}a^{9}-\frac{6}{17621}a^{8}+\frac{45}{17621}a^{7}-\frac{240}{17621}a^{6}+\frac{675}{17621}a^{5}-\frac{3000}{17621}a^{4}+\frac{4531}{17621}a^{3}-\frac{14286}{17621}a^{2}+\frac{17340}{17621}a-\frac{30360}{17621}$, $\frac{6}{17621}a^{8}+\frac{240}{17621}a^{6}+\frac{3000}{17621}a^{4}-\frac{781}{17621}a^{3}+\frac{12000}{17621}a^{2}-\frac{11715}{17621}a+\frac{7500}{17621}$
|
| |
| Regulator: | \( 26.1711060094 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 26.1711060094 \cdot 132}{2\cdot\sqrt{9630096522760791}}\cr\approx \mathstrut & 0.172365377121 \end{aligned}\]
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-231}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.5.0.1}{5} }^{2}$ | R | ${\href{/padicField/5.5.0.1}{5} }^{2}$ | R | R | ${\href{/padicField/13.5.0.1}{5} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.5.0.1}{5} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{5}$ | ${\href{/padicField/29.5.0.1}{5} }^{2}$ | ${\href{/padicField/31.10.0.1}{10} }$ | ${\href{/padicField/37.5.0.1}{5} }^{2}$ | ${\href{/padicField/41.10.0.1}{10} }$ | ${\href{/padicField/43.2.0.1}{2} }^{5}$ | ${\href{/padicField/47.5.0.1}{5} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }$ | ${\href{/padicField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.5.2.5a1.1 | $x^{10} + 4 x^{6} + 2 x^{5} + 4 x^{2} + 7 x + 1$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ |
|
\(7\)
| 7.5.2.5a1.1 | $x^{10} + 2 x^{6} + 8 x^{5} + x^{2} + 15 x + 16$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ |
|
\(11\)
| 11.1.10.9a1.10 | $x^{10} + 110$ | $10$ | $1$ | $9$ | $C_{10}$ | $$[\ ]_{10}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *10 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *10 | 1.231.2t1.a.a | $1$ | $ 3 \cdot 7 \cdot 11 $ | \(\Q(\sqrt{-231}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| *10 | 1.11.5t1.a.a | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
| *10 | 1.231.10t1.b.a | $1$ | $ 3 \cdot 7 \cdot 11 $ | 10.0.9630096522760791.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
| *10 | 1.11.5t1.a.b | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
| *10 | 1.231.10t1.b.b | $1$ | $ 3 \cdot 7 \cdot 11 $ | 10.0.9630096522760791.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
| *10 | 1.11.5t1.a.c | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
| *10 | 1.231.10t1.b.c | $1$ | $ 3 \cdot 7 \cdot 11 $ | 10.0.9630096522760791.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
| *10 | 1.11.5t1.a.d | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
| *10 | 1.231.10t1.b.d | $1$ | $ 3 \cdot 7 \cdot 11 $ | 10.0.9630096522760791.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |