Normalized defining polynomial
\( x^{10} - x^{9} + 56 x^{8} - 56 x^{7} + 1156 x^{6} - 1156 x^{5} + 10781 x^{4} - 10781 x^{3} + \cdots + 79531 \)
Invariants
Degree: | $10$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-9630096522760791\) \(\medspace = -\,3^{5}\cdot 7^{5}\cdot 11^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(39.66\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}7^{1/2}11^{9/10}\approx 39.66094555677728$ | ||
Ramified primes: | \(3\), \(7\), \(11\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-231}) \) | ||
$\card{ \Gal(K/\Q) }$: | $10$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(231=3\cdot 7\cdot 11\) | ||
Dirichlet character group: | $\lbrace$$\chi_{231}(64,·)$, $\chi_{231}(1,·)$, $\chi_{231}(230,·)$, $\chi_{231}(167,·)$, $\chi_{231}(41,·)$, $\chi_{231}(83,·)$, $\chi_{231}(148,·)$, $\chi_{231}(62,·)$, $\chi_{231}(169,·)$, $\chi_{231}(190,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-231}) \), 10.0.9630096522760791.1$^{15}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{17621}a^{6}+\frac{1287}{17621}a^{5}+\frac{30}{17621}a^{4}-\frac{3067}{17621}a^{3}+\frac{225}{17621}a^{2}+\frac{2286}{17621}a+\frac{250}{17621}$, $\frac{1}{17621}a^{7}+\frac{35}{17621}a^{5}-\frac{6435}{17621}a^{4}+\frac{350}{17621}a^{3}-\frac{5353}{17621}a^{2}+\frac{875}{17621}a-\frac{4572}{17621}$, $\frac{1}{17621}a^{8}+\frac{1383}{17621}a^{5}-\frac{700}{17621}a^{4}-\frac{3734}{17621}a^{3}-\frac{7000}{17621}a^{2}+\frac{3523}{17621}a-\frac{8750}{17621}$, $\frac{1}{17621}a^{9}-\frac{900}{17621}a^{5}+\frac{7639}{17621}a^{4}+\frac{5621}{17621}a^{3}-\frac{8095}{17621}a^{2}+\frac{1492}{17621}a+\frac{6670}{17621}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{66}$, which has order $132$
Relative class number: $132$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{11}{17621}a^{7}+\frac{385}{17621}a^{5}-\frac{301}{17621}a^{4}+\frac{3850}{17621}a^{3}-\frac{6020}{17621}a^{2}+\frac{9625}{17621}a-\frac{15050}{17621}$, $\frac{1}{17621}a^{9}+\frac{45}{17621}a^{7}+\frac{675}{17621}a^{5}+\frac{3750}{17621}a^{3}-\frac{2286}{17621}a^{2}+\frac{5625}{17621}a-\frac{22860}{17621}$, $\frac{1}{17621}a^{9}-\frac{6}{17621}a^{8}+\frac{45}{17621}a^{7}-\frac{240}{17621}a^{6}+\frac{675}{17621}a^{5}-\frac{3000}{17621}a^{4}+\frac{4531}{17621}a^{3}-\frac{14286}{17621}a^{2}+\frac{17340}{17621}a-\frac{30360}{17621}$, $\frac{6}{17621}a^{8}+\frac{240}{17621}a^{6}+\frac{3000}{17621}a^{4}-\frac{781}{17621}a^{3}+\frac{12000}{17621}a^{2}-\frac{11715}{17621}a+\frac{7500}{17621}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 26.1711060094 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 26.1711060094 \cdot 132}{2\cdot\sqrt{9630096522760791}}\cr\approx \mathstrut & 0.172365377121 \end{aligned}\]
Galois group
A cyclic group of order 10 |
The 10 conjugacy class representatives for $C_{10}$ |
Character table for $C_{10}$ |
Intermediate fields
\(\Q(\sqrt{-231}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.5.0.1}{5} }^{2}$ | R | ${\href{/padicField/5.5.0.1}{5} }^{2}$ | R | R | ${\href{/padicField/13.5.0.1}{5} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.5.0.1}{5} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{5}$ | ${\href{/padicField/29.5.0.1}{5} }^{2}$ | ${\href{/padicField/31.10.0.1}{10} }$ | ${\href{/padicField/37.5.0.1}{5} }^{2}$ | ${\href{/padicField/41.10.0.1}{10} }$ | ${\href{/padicField/43.2.0.1}{2} }^{5}$ | ${\href{/padicField/47.5.0.1}{5} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }$ | ${\href{/padicField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.10.5.1 | $x^{10} + 162 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
\(7\) | 7.10.5.1 | $x^{10} + 2401 x^{2} - 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
\(11\) | 11.10.9.1 | $x^{10} + 110$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.231.2t1.a.a | $1$ | $ 3 \cdot 7 \cdot 11 $ | \(\Q(\sqrt{-231}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.11.5t1.a.a | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.231.10t1.b.a | $1$ | $ 3 \cdot 7 \cdot 11 $ | 10.0.9630096522760791.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.11.5t1.a.b | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.231.10t1.b.b | $1$ | $ 3 \cdot 7 \cdot 11 $ | 10.0.9630096522760791.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.11.5t1.a.c | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.231.10t1.b.c | $1$ | $ 3 \cdot 7 \cdot 11 $ | 10.0.9630096522760791.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.11.5t1.a.d | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.231.10t1.b.d | $1$ | $ 3 \cdot 7 \cdot 11 $ | 10.0.9630096522760791.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |