Normalized defining polynomial
\( x^{10} - x^{9} - 3919 x^{8} + 468000 x^{7} + 7306840 x^{6} - 1012165680 x^{5} + 24905759920 x^{4} + \cdots + 10\!\cdots\!00 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[0, 5]$ |
| |
| Discriminant: |
\(-322760486162698979743554510954828796875\)
\(\medspace = -\,3^{5}\cdot 5^{6}\cdot 41^{8}\cdot 239^{8}\)
|
| |
| Root discriminant: | \(7093.95\) |
| |
| Galois root discriminant: | $3^{1/2}5^{3/4}41^{4/5}239^{4/5}\approx 9030.952057415474$ | ||
| Ramified primes: |
\(3\), \(5\), \(41\), \(239\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{64}a^{4}+\frac{9}{64}a^{3}-\frac{13}{64}a^{2}+\frac{7}{32}a+\frac{1}{16}$, $\frac{1}{128}a^{5}-\frac{1}{128}a^{4}+\frac{25}{128}a^{3}-\frac{3}{8}a^{2}-\frac{1}{16}a-\frac{5}{16}$, $\frac{1}{20480}a^{6}+\frac{59}{20480}a^{5}+\frac{121}{20480}a^{4}-\frac{15}{512}a^{3}-\frac{73}{1024}a^{2}-\frac{7}{32}a-\frac{3}{256}$, $\frac{1}{40960}a^{7}-\frac{1}{40960}a^{6}+\frac{101}{40960}a^{5}+\frac{7}{2048}a^{4}+\frac{47}{2048}a^{3}+\frac{127}{512}a^{2}-\frac{99}{512}a+\frac{5}{128}$, $\frac{1}{1310720}a^{8}+\frac{13}{1310720}a^{7}-\frac{29}{1310720}a^{6}+\frac{175}{131072}a^{5}+\frac{17}{2560}a^{4}-\frac{6685}{32768}a^{3}+\frac{1745}{4096}a^{2}-\frac{2091}{8192}a+\frac{637}{4096}$, $\frac{1}{19\cdots 60}a^{9}-\frac{89\cdots 47}{38\cdots 12}a^{8}-\frac{62\cdots 89}{19\cdots 60}a^{7}+\frac{21\cdots 59}{95\cdots 80}a^{6}+\frac{46\cdots 93}{11\cdots 60}a^{5}-\frac{13\cdots 29}{23\cdots 20}a^{4}+\frac{18\cdots 09}{29\cdots 04}a^{3}-\frac{82\cdots 27}{11\cdots 16}a^{2}-\frac{69\cdots 75}{59\cdots 08}a+\frac{85\cdots 87}{58\cdots 56}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{5}\times C_{5}$, which has order $25$ (assuming GRH) |
| |
| Narrow class group: | $C_{5}\times C_{5}$, which has order $25$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -\frac{28793485092456485786789}{5849500124424892225985373482330879920} a^{9} - \frac{1196214365429668449847891}{11699000248849784451970746964661759840} a^{8} + \frac{189570762066143482946898093}{11699000248849784451970746964661759840} a^{7} - \frac{23001826689795980390227042709}{11699000248849784451970746964661759840} a^{6} - \frac{22551522512705522208445414971}{292475006221244611299268674116543996} a^{5} + \frac{17286937899812776757302014433421}{5849500124424892225985373482330879920} a^{4} - \frac{4991998135583734362086925092193}{73118751555311152824817168529135999} a^{3} + \frac{570321546186883086747147397018429}{146237503110622305649634337058271998} a^{2} - \frac{8697349528554892477831302125474386}{73118751555311152824817168529135999} a + \frac{152531683364495495080833652359}{56874266642588408889413885219} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{11\cdots 17}{19\cdots 60}a^{9}-\frac{20\cdots 63}{38\cdots 12}a^{8}+\frac{38\cdots 91}{19\cdots 60}a^{7}+\frac{13\cdots 89}{95\cdots 80}a^{6}-\frac{22\cdots 37}{23\cdots 20}a^{5}+\frac{64\cdots 19}{23\cdots 20}a^{4}-\frac{12\cdots 23}{11\cdots 16}a^{3}+\frac{37\cdots 21}{11\cdots 16}a^{2}-\frac{37\cdots 05}{59\cdots 08}a+\frac{83\cdots 53}{11\cdots 12}$, $\frac{75\cdots 35}{95\cdots 28}a^{9}-\frac{11\cdots 89}{95\cdots 28}a^{8}-\frac{21\cdots 87}{47\cdots 40}a^{7}+\frac{82\cdots 01}{23\cdots 20}a^{6}+\frac{85\cdots 13}{29\cdots 40}a^{5}-\frac{16\cdots 95}{11\cdots 16}a^{4}-\frac{29\cdots 99}{74\cdots 76}a^{3}-\frac{39\cdots 17}{29\cdots 04}a^{2}+\frac{23\cdots 47}{14\cdots 52}a-\frac{50\cdots 57}{72\cdots 32}$, $\frac{12\cdots 99}{46\cdots 48}a^{9}+\frac{14\cdots 55}{18\cdots 92}a^{8}-\frac{15\cdots 45}{18\cdots 92}a^{7}+\frac{19\cdots 41}{18\cdots 92}a^{6}+\frac{47\cdots 05}{93\cdots 96}a^{5}-\frac{39\cdots 75}{29\cdots 28}a^{4}+\frac{73\cdots 05}{23\cdots 24}a^{3}-\frac{45\cdots 25}{29\cdots 28}a^{2}+\frac{18\cdots 75}{58\cdots 56}a-\frac{21\cdots 13}{29\cdots 28}$, $\frac{61\cdots 89}{23\cdots 32}a^{9}-\frac{44\cdots 89}{59\cdots 80}a^{8}+\frac{23\cdots 29}{29\cdots 40}a^{7}-\frac{11\cdots 29}{11\cdots 60}a^{6}-\frac{28\cdots 87}{59\cdots 80}a^{5}+\frac{17\cdots 89}{14\cdots 20}a^{4}-\frac{83\cdots 27}{29\cdots 04}a^{3}+\frac{13\cdots 81}{74\cdots 76}a^{2}-\frac{29\cdots 55}{74\cdots 76}a+\frac{25\cdots 15}{29\cdots 28}$
|
| |
| Regulator: | \( 303066841016740.94 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 303066841016740.94 \cdot 25}{6\cdot\sqrt{322760486162698979743554510954828796875}}\cr\approx \mathstrut & 0.688313585987879 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times F_5$ (as 10T5):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $F_{5}\times C_2$ |
| Character table for $F_{5}\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.1.1152489676025100125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }$ | R | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.10.0.1}{10} }$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.2.0.1}{2} }^{5}$ | ${\href{/padicField/31.5.0.1}{5} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(5\)
| 5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
|
\(41\)
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |
|
\(239\)
| Deg $10$ | $5$ | $2$ | $8$ |