Properties

Label 10.0.188...611.3
Degree $10$
Signature $[0, 5]$
Discriminant $-1.883\times 10^{22}$
Root discriminant \(168.84\)
Ramified primes $11,41$
Class number $605$ (GRH)
Class group [605] (GRH)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^10 - x^9 + x^8 + 703*x^7 - 2749*x^6 + 5521*x^5 + 108307*x^4 - 1082247*x^3 + 3899732*x^2 - 8172924*x + 9240419)
 
Copy content gp:K = bnfinit(y^10 - y^9 + y^8 + 703*y^7 - 2749*y^6 + 5521*y^5 + 108307*y^4 - 1082247*y^3 + 3899732*y^2 - 8172924*y + 9240419, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - x^9 + x^8 + 703*x^7 - 2749*x^6 + 5521*x^5 + 108307*x^4 - 1082247*x^3 + 3899732*x^2 - 8172924*x + 9240419);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^10 - x^9 + x^8 + 703*x^7 - 2749*x^6 + 5521*x^5 + 108307*x^4 - 1082247*x^3 + 3899732*x^2 - 8172924*x + 9240419)
 

\( x^{10} - x^{9} + x^{8} + 703 x^{7} - 2749 x^{6} + 5521 x^{5} + 108307 x^{4} - 1082247 x^{3} + \cdots + 9240419 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $10$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 5]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-18828036006813507909611\) \(\medspace = -\,11^{9}\cdot 41^{8}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(168.84\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $11^{9/10}41^{4/5}\approx 168.84200548797392$
Ramified primes:   \(11\), \(41\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{-11}) \)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $C_{10}$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(451=11\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{451}(1,·)$, $\chi_{451}(262,·)$, $\chi_{451}(329,·)$, $\chi_{451}(51,·)$, $\chi_{451}(182,·)$, $\chi_{451}(201,·)$, $\chi_{451}(57,·)$, $\chi_{451}(346,·)$, $\chi_{451}(283,·)$, $\chi_{451}(92,·)$$\rbrace$
This is a CM field.
Reflex fields:  \(\Q(\sqrt{-11}) \), 10.0.18828036006813507909611.3$^{15}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{56\cdots 27}a^{9}+\frac{22\cdots 19}{56\cdots 27}a^{8}+\frac{22\cdots 54}{56\cdots 27}a^{7}-\frac{81\cdots 97}{56\cdots 27}a^{6}+\frac{28\cdots 41}{56\cdots 27}a^{5}-\frac{80\cdots 99}{56\cdots 27}a^{4}-\frac{46\cdots 43}{56\cdots 27}a^{3}-\frac{10\cdots 07}{56\cdots 27}a^{2}-\frac{12\cdots 00}{56\cdots 27}a+\frac{55\cdots 87}{20\cdots 83}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{605}$, which has order $605$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{605}$, which has order $605$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 
Relative class number:   $121$ (assuming GRH)

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $4$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{41\cdots 40}{20\cdots 83}a^{9}-\frac{27\cdots 26}{20\cdots 83}a^{8}-\frac{39\cdots 65}{20\cdots 83}a^{7}+\frac{29\cdots 70}{20\cdots 83}a^{6}-\frac{90\cdots 14}{20\cdots 83}a^{5}-\frac{12\cdots 15}{20\cdots 83}a^{4}+\frac{53\cdots 90}{20\cdots 83}a^{3}-\frac{35\cdots 71}{20\cdots 83}a^{2}+\frac{77\cdots 21}{20\cdots 83}a-\frac{37\cdots 98}{20\cdots 83}$, $\frac{27\cdots 65}{20\cdots 83}a^{9}+\frac{14\cdots 88}{20\cdots 83}a^{8}+\frac{26\cdots 45}{20\cdots 83}a^{7}+\frac{18\cdots 10}{20\cdots 83}a^{6}-\frac{47\cdots 52}{20\cdots 83}a^{5}+\frac{68\cdots 42}{20\cdots 83}a^{4}+\frac{24\cdots 57}{20\cdots 83}a^{3}-\frac{22\cdots 15}{20\cdots 83}a^{2}+\frac{49\cdots 86}{20\cdots 83}a-\frac{10\cdots 07}{20\cdots 83}$, $\frac{30\cdots 24}{20\cdots 83}a^{9}+\frac{16\cdots 09}{20\cdots 83}a^{8}+\frac{43\cdots 54}{20\cdots 83}a^{7}+\frac{23\cdots 18}{20\cdots 83}a^{6}-\frac{56\cdots 79}{20\cdots 83}a^{5}+\frac{40\cdots 82}{20\cdots 83}a^{4}+\frac{35\cdots 46}{20\cdots 83}a^{3}-\frac{30\cdots 89}{20\cdots 83}a^{2}+\frac{66\cdots 69}{20\cdots 83}a-\frac{13\cdots 94}{20\cdots 83}$, $\frac{14\cdots 15}{20\cdots 83}a^{9}+\frac{61\cdots 09}{20\cdots 83}a^{8}-\frac{42\cdots 68}{20\cdots 83}a^{7}+\frac{10\cdots 37}{20\cdots 83}a^{6}-\frac{25\cdots 50}{20\cdots 83}a^{5}-\frac{61\cdots 53}{20\cdots 83}a^{4}+\frac{17\cdots 02}{20\cdots 83}a^{3}-\frac{13\cdots 37}{20\cdots 83}a^{2}+\frac{29\cdots 45}{20\cdots 83}a-\frac{11\cdots 11}{20\cdots 83}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 5741.1404574 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 5741.1404574 \cdot 605}{2\cdot\sqrt{18828036006813507909611}}\cr\approx \mathstrut & 0.12394253734 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^10 - x^9 + x^8 + 703*x^7 - 2749*x^6 + 5521*x^5 + 108307*x^4 - 1082247*x^3 + 3899732*x^2 - 8172924*x + 9240419) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^10 - x^9 + x^8 + 703*x^7 - 2749*x^6 + 5521*x^5 + 108307*x^4 - 1082247*x^3 + 3899732*x^2 - 8172924*x + 9240419, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - x^9 + x^8 + 703*x^7 - 2749*x^6 + 5521*x^5 + 108307*x^4 - 1082247*x^3 + 3899732*x^2 - 8172924*x + 9240419); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^10 - x^9 + x^8 + 703*x^7 - 2749*x^6 + 5521*x^5 + 108307*x^4 - 1082247*x^3 + 3899732*x^2 - 8172924*x + 9240419); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{10}$ (as 10T1):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{-11}) \), 5.5.41371966801.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.10.0.1}{10} }$ ${\href{/padicField/3.5.0.1}{5} }^{2}$ ${\href{/padicField/5.5.0.1}{5} }^{2}$ ${\href{/padicField/7.10.0.1}{10} }$ R ${\href{/padicField/13.10.0.1}{10} }$ ${\href{/padicField/17.10.0.1}{10} }$ ${\href{/padicField/19.10.0.1}{10} }$ ${\href{/padicField/23.5.0.1}{5} }^{2}$ ${\href{/padicField/29.10.0.1}{10} }$ ${\href{/padicField/31.5.0.1}{5} }^{2}$ ${\href{/padicField/37.5.0.1}{5} }^{2}$ R ${\href{/padicField/43.10.0.1}{10} }$ ${\href{/padicField/47.5.0.1}{5} }^{2}$ ${\href{/padicField/53.5.0.1}{5} }^{2}$ ${\href{/padicField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display 11.1.10.9a1.3$x^{10} + 33$$10$$1$$9$$C_{10}$$$[\ ]_{10}$$
\(41\) Copy content Toggle raw display 41.2.5.8a1.1$x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$$5$$2$$8$$C_{10}$$$[\ ]_{5}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)