Normalized defining polynomial
\( x^{10} - 15x^{8} - 30x^{7} + 150x^{6} - 126x^{5} + 600x^{4} - 180x^{3} - 360x^{2} + 144 \)
Invariants
Degree: | $10$ |
| |
Signature: | $[0, 5]$ |
| |
Discriminant: |
\(-18683472656250000000\)
\(\medspace = -\,2^{7}\cdot 3^{14}\cdot 5^{15}\)
|
| |
Root discriminant: | \(84.56\) |
| |
Galois root discriminant: | $2^{11/6}3^{23/12}5^{163/100}\approx 403.35907958801755$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-10}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-15}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{10}a^{5}-\frac{1}{2}a^{3}+\frac{1}{5}$, $\frac{1}{30}a^{6}-\frac{1}{2}a^{3}+\frac{2}{5}a$, $\frac{1}{60}a^{7}-\frac{1}{20}a^{5}-\frac{3}{10}a^{2}+\frac{2}{5}$, $\frac{1}{300}a^{8}+\frac{1}{300}a^{7}-\frac{1}{100}a^{6}+\frac{1}{100}a^{5}-\frac{1}{10}a^{4}-\frac{13}{50}a^{3}+\frac{7}{50}a^{2}-\frac{8}{25}a-\frac{12}{25}$, $\frac{1}{11400}a^{9}+\frac{1}{5700}a^{8}-\frac{29}{3800}a^{7}+\frac{1}{114}a^{6}+\frac{33}{1900}a^{5}+\frac{7}{1900}a^{4}+\frac{13}{50}a^{3}+\frac{23}{950}a^{2}+\frac{13}{95}a-\frac{231}{475}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $4$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{31349}{5700}a^{9}-\frac{10042}{1425}a^{8}-\frac{562579}{5700}a^{7}+\frac{227747}{1425}a^{6}+\frac{38689}{950}a^{5}+\frac{144824}{475}a^{4}+\frac{29228}{25}a^{3}-\frac{542929}{475}a^{2}-\frac{324612}{475}a+\frac{313259}{475}$, $\frac{957281}{228}a^{9}+\frac{2111243}{570}a^{8}-\frac{22756709}{380}a^{7}-\frac{33959247}{190}a^{6}+\frac{18017167}{38}a^{5}-\frac{2055425}{19}a^{4}+\frac{12026074}{5}a^{3}+\frac{137410683}{95}a^{2}-\frac{37108257}{95}a-\frac{10920179}{19}$, $\frac{745576323}{3800}a^{9}+\frac{435811363}{2850}a^{8}-\frac{32292795019}{11400}a^{7}-\frac{46207575031}{5700}a^{6}+\frac{44139652579}{1900}a^{5}-\frac{11727899887}{1900}a^{4}+\frac{2804069954}{25}a^{3}+\frac{49285107081}{950}a^{2}-\frac{16808744981}{475}a-\frac{15845795863}{475}$, $\frac{2039803267}{60}a^{9}+\frac{2608652677}{10}a^{8}-\frac{9139400827}{60}a^{7}-\frac{136897627603}{30}a^{6}-7758394684a^{5}+\frac{94225020527}{5}a^{4}+\frac{126514921272}{5}a^{3}+\frac{734360767968}{5}a^{2}+\frac{737627713209}{5}a+54128251547$
|
| |
Regulator: | \( 9401767.20909 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 9401767.20909 \cdot 2}{2\cdot\sqrt{18683472656250000000}}\cr\approx \mathstrut & 21.3000211717 \end{aligned}\] (assuming GRH)
Galois group
$S_5\wr C_2$ (as 10T43):
A non-solvable group of order 28800 |
The 35 conjugacy class representatives for $S_5^2 \wr C_2$ |
Character table for $S_5^2 \wr C_2$ |
Intermediate fields
\(\Q(\sqrt{-15}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | data not computed |
Degree 20 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 25 sibling: | data not computed |
Degree 30 sibling: | data not computed |
Degree 36 sibling: | data not computed |
Degree 40 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.10.0.1}{10} }$ | ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.4.0.1}{4} }$ | ${\href{/padicField/43.10.0.1}{10} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
\(3\)
| 3.1.4.3a1.2 | $x^{4} + 6$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |
3.1.6.11a2.1 | $x^{6} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[\frac{5}{2}]_{2}^{2}$$ | |
\(5\)
| 5.1.10.15a2.9 | $x^{10} + 10 x^{7} + 5 x^{6} + 10$ | $10$ | $1$ | $15$ | $C_5^2 : C_4$ | $$[\frac{5}{4}, \frac{7}{4}]_{4}$$ |