Defining polynomial
\(x^{10} + 10 x^{7} + 5 x^{6} + 10\)
|
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $10$ |
Ramification index $e$: | $10$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $15$ |
Discriminant root field: | $\Q_{5}(\sqrt{5\cdot 2})$ |
Root number: | $-1$ |
$\Aut(K/\Q_{5})$: | $C_1$ |
This field is not Galois over $\Q_{5}.$ | |
Visible Artin slopes: | $[\frac{7}{4}]$ |
Visible Swan slopes: | $[\frac{3}{4}]$ |
Means: | $\langle\frac{3}{5}\rangle$ |
Rams: | $(\frac{3}{2})$ |
Jump set: | undefined |
Roots of unity: | $4 = (5 - 1)$ |
Intermediate fields
$\Q_{5}(\sqrt{5\cdot 2})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{5}$ |
Relative Eisenstein polynomial: |
\( x^{10} + 10 x^{7} + 5 x^{6} + 10 \)
|
Ramification polygon
Residual polynomials: | $z^5 + 2$,$2 z^2 + 2$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[6, 0]$ |
Invariants of the Galois closure
Galois degree: | $100$ |
Galois group: | $C_5:F_5$ (as 10T10) |
Inertia group: | $C_5:F_5$ (as 10T10) |
Wild inertia group: | $C_5^2$ |
Galois unramified degree: | $1$ |
Galois tame degree: | $4$ |
Galois Artin slopes: | $[\frac{5}{4}, \frac{7}{4}]$ |
Galois Swan slopes: | $[\frac{1}{4},\frac{3}{4}]$ |
Galois mean slope: | $1.63$ |
Galois splitting model: | $x^{10} - 10 x^{8} - 100 x^{7} - 285 x^{6} + 604 x^{5} + 2800 x^{4} - 720 x^{3} - 4300 x^{2} - 3120 x - 7536$ |