Properties

Label 5.1.10.15a2.9
Base \(\Q_{5}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(15\)
Galois group $C_5^2 : C_4$ (as 10T10)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 10 x^{7} + 5 x^{6} + 10\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $10$
Ramification index $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{5}(\sqrt{5\cdot 2})$
Root number: $-1$
$\Aut(K/\Q_{5})$: $C_1$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[\frac{7}{4}]$
Visible Swan slopes:$[\frac{3}{4}]$
Means:$\langle\frac{3}{5}\rangle$
Rams:$(\frac{3}{2})$
Jump set:undefined
Roots of unity:$4 = (5 - 1)$

Intermediate fields

$\Q_{5}(\sqrt{5\cdot 2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{10} + 10 x^{7} + 5 x^{6} + 10 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^5 + 2$,$2 z^2 + 2$
Associated inertia:$1$,$1$
Indices of inseparability:$[6, 0]$

Invariants of the Galois closure

Galois degree: $100$
Galois group: $C_5:F_5$ (as 10T10)
Inertia group: $C_5:F_5$ (as 10T10)
Wild inertia group: $C_5^2$
Galois unramified degree: $1$
Galois tame degree: $4$
Galois Artin slopes: $[\frac{5}{4}, \frac{7}{4}]$
Galois Swan slopes: $[\frac{1}{4},\frac{3}{4}]$
Galois mean slope: $1.63$
Galois splitting model:$x^{10} - 10 x^{8} - 100 x^{7} - 285 x^{6} + 604 x^{5} + 2800 x^{4} - 720 x^{3} - 4300 x^{2} - 3120 x - 7536$