Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $10$ | |
| Group : | $C_5^2 : C_4$ | |
| CHM label : | $1/2[D(5)^{2}]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10), (1,6,9,4)(2,3,8,7)(5,10) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 20: $F_5$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: None
Low degree siblings
10T10, 20T27 x 2, 25T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1 $ | $25$ | $2$ | $( 3, 9)( 4,10)( 5, 7)( 6, 8)$ |
| $ 5, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 2, 4, 6, 8,10)$ |
| $ 5, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 2, 6,10, 4, 8)$ |
| $ 4, 4, 2 $ | $25$ | $4$ | $( 1, 2)( 3, 4, 9,10)( 5, 6, 7, 8)$ |
| $ 4, 4, 2 $ | $25$ | $4$ | $( 1, 2)( 3,10, 9, 4)( 5, 8, 7, 6)$ |
| $ 5, 5 $ | $4$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
| $ 5, 5 $ | $4$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 6,10, 4, 8)$ |
| $ 5, 5 $ | $4$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 8, 4,10, 6)$ |
| $ 5, 5 $ | $4$ | $5$ | $( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)$ |
Group invariants
| Order: | $100=2^{2} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [100, 12] |
| Character table: |
2 2 2 . . 2 2 . . . .
5 2 . 2 2 . . 2 2 2 2
1a 2a 5a 5b 4a 4b 5c 5d 5e 5f
2P 1a 1a 5b 5a 2a 2a 5f 5d 5e 5c
3P 1a 2a 5b 5a 4b 4a 5f 5d 5e 5c
5P 1a 2a 1a 1a 4a 4b 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1 1 1 1 1
X.3 1 -1 1 1 C -C 1 1 1 1
X.4 1 -1 1 1 -C C 1 1 1 1
X.5 4 . -1 -1 . . -1 4 -1 -1
X.6 4 . -1 -1 . . -1 -1 4 -1
X.7 4 . A *A . . B -1 -1 *B
X.8 4 . *A A . . *B -1 -1 B
X.9 4 . B *B . . *A -1 -1 A
X.10 4 . *B B . . A -1 -1 *A
A = 2*E(5)^2+2*E(5)^3
= -1-Sqrt(5) = -1-r5
B = -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4
= (3+Sqrt(5))/2 = 2+b5
C = -E(4)
= -Sqrt(-1) = -i
|