Properties

Label 990.2.t.a.461.8
Level $990$
Weight $2$
Character 990.461
Analytic conductor $7.905$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(131,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 461.8
Character \(\chi\) \(=\) 990.461
Dual form 990.2.t.a.131.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.19434 - 1.25442i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.866025 - 0.500000i) q^{5} +(1.68352 - 0.407116i) q^{6} +(-1.93804 - 1.11893i) q^{7} +1.00000 q^{8} +(-0.147126 + 2.99639i) q^{9} +1.00000i q^{10} +(2.43975 + 2.24669i) q^{11} +(-0.489190 + 1.66153i) q^{12} +(-2.70110 + 1.55948i) q^{13} +(1.93804 - 1.11893i) q^{14} +(-1.66153 - 0.489190i) q^{15} +(-0.500000 + 0.866025i) q^{16} -3.53311 q^{17} +(-2.52139 - 1.62561i) q^{18} +0.649165i q^{19} +(-0.866025 - 0.500000i) q^{20} +(0.911067 + 3.76748i) q^{21} +(-3.16557 + 0.989540i) q^{22} +(1.72813 - 0.997734i) q^{23} +(-1.19434 - 1.25442i) q^{24} +(0.500000 - 0.866025i) q^{25} -3.11896i q^{26} +(3.93444 - 3.39414i) q^{27} +2.23785i q^{28} +(0.0531702 - 0.0920935i) q^{29} +(1.25442 - 1.19434i) q^{30} +(4.17649 + 7.23389i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-0.0955921 - 5.74377i) q^{33} +(1.76655 - 3.05976i) q^{34} -2.23785 q^{35} +(2.66851 - 1.37078i) q^{36} -3.00315 q^{37} +(-0.562194 - 0.324583i) q^{38} +(5.18226 + 1.52576i) q^{39} +(0.866025 - 0.500000i) q^{40} +(1.38401 + 2.39717i) q^{41} +(-3.71827 - 1.09474i) q^{42} +(10.0170 + 5.78333i) q^{43} +(0.725816 - 3.23623i) q^{44} +(1.37078 + 2.66851i) q^{45} +1.99547i q^{46} +(5.60838 + 3.23800i) q^{47} +(1.68352 - 0.407116i) q^{48} +(-0.996003 - 1.72513i) q^{49} +(0.500000 + 0.866025i) q^{50} +(4.21972 + 4.43199i) q^{51} +(2.70110 + 1.55948i) q^{52} -3.95259i q^{53} +(0.972189 + 5.10439i) q^{54} +(3.23623 + 0.725816i) q^{55} +(-1.93804 - 1.11893i) q^{56} +(0.814324 - 0.775321i) q^{57} +(0.0531702 + 0.0920935i) q^{58} +(-2.80361 + 1.61866i) q^{59} +(0.407116 + 1.68352i) q^{60} +(11.4068 + 6.58570i) q^{61} -8.35297 q^{62} +(3.63788 - 5.64250i) q^{63} +1.00000 q^{64} +(-1.55948 + 2.70110i) q^{65} +(5.02204 + 2.78910i) q^{66} +(4.91487 + 8.51280i) q^{67} +(1.76655 + 3.05976i) q^{68} +(-3.31554 - 0.976162i) q^{69} +(1.11893 - 1.93804i) q^{70} -1.16465i q^{71} +(-0.147126 + 2.99639i) q^{72} -1.40361i q^{73} +(1.50157 - 2.60080i) q^{74} +(-1.68352 + 0.407116i) q^{75} +(0.562194 - 0.324583i) q^{76} +(-2.21445 - 7.08408i) q^{77} +(-3.91248 + 3.72509i) q^{78} +(2.59056 + 1.49566i) q^{79} +1.00000i q^{80} +(-8.95671 - 0.881691i) q^{81} -2.76801 q^{82} +(-4.91742 + 8.51723i) q^{83} +(2.80720 - 2.67275i) q^{84} +(-3.05976 + 1.76655i) q^{85} +(-10.0170 + 5.78333i) q^{86} +(-0.179027 + 0.0432929i) q^{87} +(2.43975 + 2.24669i) q^{88} -0.269039i q^{89} +(-2.99639 - 0.147126i) q^{90} +6.97979 q^{91} +(-1.72813 - 0.997734i) q^{92} +(4.08619 - 13.8787i) q^{93} +(-5.60838 + 3.23800i) q^{94} +(0.324583 + 0.562194i) q^{95} +(-0.489190 + 1.66153i) q^{96} +(-2.53151 + 4.38471i) q^{97} +1.99201 q^{98} +(-7.09091 + 6.97990i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 24 q^{2} - 2 q^{3} - 24 q^{4} - 2 q^{6} + 48 q^{8} + 10 q^{9} - 6 q^{11} + 4 q^{12} + 24 q^{13} - 4 q^{15} - 24 q^{16} - 12 q^{17} - 8 q^{18} - 16 q^{21} + 12 q^{22} + 36 q^{23} - 2 q^{24} + 24 q^{25}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −1.19434 1.25442i −0.689550 0.724238i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.866025 0.500000i 0.387298 0.223607i
\(6\) 1.68352 0.407116i 0.687296 0.166204i
\(7\) −1.93804 1.11893i −0.732510 0.422915i 0.0868297 0.996223i \(-0.472326\pi\)
−0.819340 + 0.573308i \(0.805660\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.147126 + 2.99639i −0.0490419 + 0.998797i
\(10\) 1.00000i 0.316228i
\(11\) 2.43975 + 2.24669i 0.735612 + 0.677403i
\(12\) −0.489190 + 1.66153i −0.141217 + 0.479643i
\(13\) −2.70110 + 1.55948i −0.749151 + 0.432522i −0.825387 0.564567i \(-0.809043\pi\)
0.0762361 + 0.997090i \(0.475710\pi\)
\(14\) 1.93804 1.11893i 0.517963 0.299046i
\(15\) −1.66153 0.489190i −0.429006 0.126308i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.53311 −0.856905 −0.428452 0.903564i \(-0.640941\pi\)
−0.428452 + 0.903564i \(0.640941\pi\)
\(18\) −2.52139 1.62561i −0.594297 0.383160i
\(19\) 0.649165i 0.148929i 0.997224 + 0.0744644i \(0.0237247\pi\)
−0.997224 + 0.0744644i \(0.976275\pi\)
\(20\) −0.866025 0.500000i −0.193649 0.111803i
\(21\) 0.911067 + 3.76748i 0.198811 + 0.822133i
\(22\) −3.16557 + 0.989540i −0.674901 + 0.210971i
\(23\) 1.72813 0.997734i 0.360339 0.208042i −0.308890 0.951098i \(-0.599958\pi\)
0.669230 + 0.743056i \(0.266624\pi\)
\(24\) −1.19434 1.25442i −0.243793 0.256057i
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 3.11896i 0.611679i
\(27\) 3.93444 3.39414i 0.757184 0.653202i
\(28\) 2.23785i 0.422915i
\(29\) 0.0531702 0.0920935i 0.00987346 0.0171013i −0.861046 0.508526i \(-0.830190\pi\)
0.870920 + 0.491425i \(0.163524\pi\)
\(30\) 1.25442 1.19434i 0.229024 0.218055i
\(31\) 4.17649 + 7.23389i 0.750119 + 1.29924i 0.947765 + 0.318971i \(0.103337\pi\)
−0.197646 + 0.980274i \(0.563330\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −0.0955921 5.74377i −0.0166404 0.999862i
\(34\) 1.76655 3.05976i 0.302962 0.524745i
\(35\) −2.23785 −0.378267
\(36\) 2.66851 1.37078i 0.444752 0.228463i
\(37\) −3.00315 −0.493715 −0.246857 0.969052i \(-0.579398\pi\)
−0.246857 + 0.969052i \(0.579398\pi\)
\(38\) −0.562194 0.324583i −0.0911998 0.0526543i
\(39\) 5.18226 + 1.52576i 0.829826 + 0.244318i
\(40\) 0.866025 0.500000i 0.136931 0.0790569i
\(41\) 1.38401 + 2.39717i 0.216146 + 0.374375i 0.953626 0.300993i \(-0.0973181\pi\)
−0.737481 + 0.675368i \(0.763985\pi\)
\(42\) −3.71827 1.09474i −0.573742 0.168921i
\(43\) 10.0170 + 5.78333i 1.52758 + 0.881950i 0.999463 + 0.0327798i \(0.0104360\pi\)
0.528119 + 0.849170i \(0.322897\pi\)
\(44\) 0.725816 3.23623i 0.109421 0.487880i
\(45\) 1.37078 + 2.66851i 0.204344 + 0.397798i
\(46\) 1.99547i 0.294216i
\(47\) 5.60838 + 3.23800i 0.818067 + 0.472311i 0.849749 0.527187i \(-0.176753\pi\)
−0.0316824 + 0.999498i \(0.510087\pi\)
\(48\) 1.68352 0.407116i 0.242996 0.0587622i
\(49\) −0.996003 1.72513i −0.142286 0.246447i
\(50\) 0.500000 + 0.866025i 0.0707107 + 0.122474i
\(51\) 4.21972 + 4.43199i 0.590878 + 0.620603i
\(52\) 2.70110 + 1.55948i 0.374575 + 0.216261i
\(53\) 3.95259i 0.542930i −0.962448 0.271465i \(-0.912492\pi\)
0.962448 0.271465i \(-0.0875082\pi\)
\(54\) 0.972189 + 5.10439i 0.132298 + 0.694620i
\(55\) 3.23623 + 0.725816i 0.436373 + 0.0978691i
\(56\) −1.93804 1.11893i −0.258981 0.149523i
\(57\) 0.814324 0.775321i 0.107860 0.102694i
\(58\) 0.0531702 + 0.0920935i 0.00698159 + 0.0120925i
\(59\) −2.80361 + 1.61866i −0.364998 + 0.210732i −0.671271 0.741212i \(-0.734251\pi\)
0.306273 + 0.951944i \(0.400918\pi\)
\(60\) 0.407116 + 1.68352i 0.0525585 + 0.217342i
\(61\) 11.4068 + 6.58570i 1.46049 + 0.843212i 0.999034 0.0439524i \(-0.0139950\pi\)
0.461453 + 0.887165i \(0.347328\pi\)
\(62\) −8.35297 −1.06083
\(63\) 3.63788 5.64250i 0.458330 0.710888i
\(64\) 1.00000 0.125000
\(65\) −1.55948 + 2.70110i −0.193430 + 0.335030i
\(66\) 5.02204 + 2.78910i 0.618171 + 0.343314i
\(67\) 4.91487 + 8.51280i 0.600447 + 1.04000i 0.992753 + 0.120170i \(0.0383439\pi\)
−0.392307 + 0.919834i \(0.628323\pi\)
\(68\) 1.76655 + 3.05976i 0.214226 + 0.371051i
\(69\) −3.31554 0.976162i −0.399144 0.117516i
\(70\) 1.11893 1.93804i 0.133737 0.231640i
\(71\) 1.16465i 0.138219i −0.997609 0.0691095i \(-0.977984\pi\)
0.997609 0.0691095i \(-0.0220158\pi\)
\(72\) −0.147126 + 2.99639i −0.0173389 + 0.353128i
\(73\) 1.40361i 0.164280i −0.996621 0.0821400i \(-0.973825\pi\)
0.996621 0.0821400i \(-0.0261755\pi\)
\(74\) 1.50157 2.60080i 0.174554 0.302337i
\(75\) −1.68352 + 0.407116i −0.194397 + 0.0470097i
\(76\) 0.562194 0.324583i 0.0644880 0.0372322i
\(77\) −2.21445 7.08408i −0.252360 0.807306i
\(78\) −3.91248 + 3.72509i −0.443001 + 0.421783i
\(79\) 2.59056 + 1.49566i 0.291461 + 0.168275i 0.638601 0.769538i \(-0.279514\pi\)
−0.347140 + 0.937813i \(0.612847\pi\)
\(80\) 1.00000i 0.111803i
\(81\) −8.95671 0.881691i −0.995190 0.0979657i
\(82\) −2.76801 −0.305676
\(83\) −4.91742 + 8.51723i −0.539757 + 0.934887i 0.459159 + 0.888354i \(0.348151\pi\)
−0.998917 + 0.0465331i \(0.985183\pi\)
\(84\) 2.80720 2.67275i 0.306291 0.291621i
\(85\) −3.05976 + 1.76655i −0.331878 + 0.191610i
\(86\) −10.0170 + 5.78333i −1.08016 + 0.623633i
\(87\) −0.179027 + 0.0432929i −0.0191937 + 0.00464149i
\(88\) 2.43975 + 2.24669i 0.260078 + 0.239498i
\(89\) 0.269039i 0.0285181i −0.999898 0.0142590i \(-0.995461\pi\)
0.999898 0.0142590i \(-0.00453894\pi\)
\(90\) −2.99639 0.147126i −0.315847 0.0155084i
\(91\) 6.97979 0.731681
\(92\) −1.72813 0.997734i −0.180170 0.104021i
\(93\) 4.08619 13.8787i 0.423718 1.43916i
\(94\) −5.60838 + 3.23800i −0.578461 + 0.333974i
\(95\) 0.324583 + 0.562194i 0.0333015 + 0.0576798i
\(96\) −0.489190 + 1.66153i −0.0499277 + 0.169580i
\(97\) −2.53151 + 4.38471i −0.257036 + 0.445200i −0.965447 0.260601i \(-0.916079\pi\)
0.708410 + 0.705801i \(0.249413\pi\)
\(98\) 1.99201 0.201223
\(99\) −7.09091 + 6.97990i −0.712663 + 0.701506i
\(100\) −1.00000 −0.100000
\(101\) 0.625489 1.08338i 0.0622385 0.107800i −0.833227 0.552931i \(-0.813509\pi\)
0.895466 + 0.445131i \(0.146843\pi\)
\(102\) −5.94808 + 1.43839i −0.588947 + 0.142421i
\(103\) 4.34798 + 7.53091i 0.428419 + 0.742043i 0.996733 0.0807686i \(-0.0257375\pi\)
−0.568314 + 0.822812i \(0.692404\pi\)
\(104\) −2.70110 + 1.55948i −0.264865 + 0.152920i
\(105\) 2.67275 + 2.80720i 0.260834 + 0.273955i
\(106\) 3.42305 + 1.97630i 0.332476 + 0.191955i
\(107\) −7.47916 −0.723038 −0.361519 0.932365i \(-0.617742\pi\)
−0.361519 + 0.932365i \(0.617742\pi\)
\(108\) −4.90663 1.71026i −0.472141 0.164570i
\(109\) 11.4060i 1.09249i 0.837624 + 0.546247i \(0.183944\pi\)
−0.837624 + 0.546247i \(0.816056\pi\)
\(110\) −2.24669 + 2.43975i −0.214214 + 0.232621i
\(111\) 3.58677 + 3.76720i 0.340441 + 0.357567i
\(112\) 1.93804 1.11893i 0.183127 0.105729i
\(113\) 11.2536 6.49729i 1.05865 0.611214i 0.133594 0.991036i \(-0.457348\pi\)
0.925059 + 0.379822i \(0.124015\pi\)
\(114\) 0.264286 + 1.09289i 0.0247526 + 0.102358i
\(115\) 0.997734 1.72813i 0.0930392 0.161149i
\(116\) −0.106340 −0.00987346
\(117\) −4.27542 8.32300i −0.395262 0.769461i
\(118\) 3.23733i 0.298020i
\(119\) 6.84730 + 3.95329i 0.627691 + 0.362398i
\(120\) −1.66153 0.489190i −0.151677 0.0446567i
\(121\) 0.904760 + 10.9627i 0.0822509 + 0.996612i
\(122\) −11.4068 + 6.58570i −1.03272 + 0.596241i
\(123\) 1.35408 4.59915i 0.122094 0.414691i
\(124\) 4.17649 7.23389i 0.375059 0.649622i
\(125\) 1.00000i 0.0894427i
\(126\) 3.06761 + 5.97174i 0.273284 + 0.532005i
\(127\) 3.47665i 0.308503i 0.988032 + 0.154251i \(0.0492965\pi\)
−0.988032 + 0.154251i \(0.950703\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −4.70898 19.4728i −0.414602 1.71448i
\(130\) −1.55948 2.70110i −0.136776 0.236902i
\(131\) −1.86412 3.22874i −0.162869 0.282097i 0.773028 0.634372i \(-0.218741\pi\)
−0.935896 + 0.352276i \(0.885408\pi\)
\(132\) −4.92645 + 2.95467i −0.428793 + 0.257171i
\(133\) 0.726369 1.25811i 0.0629842 0.109092i
\(134\) −9.82974 −0.849160
\(135\) 1.71026 4.90663i 0.147195 0.422296i
\(136\) −3.53311 −0.302962
\(137\) 2.31644 + 1.33740i 0.197907 + 0.114262i 0.595679 0.803223i \(-0.296883\pi\)
−0.397772 + 0.917484i \(0.630216\pi\)
\(138\) 2.50315 2.38326i 0.213082 0.202876i
\(139\) 6.75836 3.90194i 0.573237 0.330958i −0.185204 0.982700i \(-0.559295\pi\)
0.758441 + 0.651742i \(0.225961\pi\)
\(140\) 1.11893 + 1.93804i 0.0945666 + 0.163794i
\(141\) −2.63649 10.9025i −0.222032 0.918158i
\(142\) 1.00862 + 0.582327i 0.0846415 + 0.0488678i
\(143\) −10.0937 2.26380i −0.844077 0.189308i
\(144\) −2.52139 1.62561i −0.210116 0.135467i
\(145\) 0.106340i 0.00883109i
\(146\) 1.21556 + 0.701804i 0.100601 + 0.0580817i
\(147\) −0.974468 + 3.30978i −0.0803728 + 0.272986i
\(148\) 1.50157 + 2.60080i 0.123429 + 0.213785i
\(149\) −0.0324085 0.0561333i −0.00265501 0.00459862i 0.864695 0.502298i \(-0.167512\pi\)
−0.867350 + 0.497699i \(0.834178\pi\)
\(150\) 0.489190 1.66153i 0.0399422 0.135664i
\(151\) 12.7926 + 7.38583i 1.04105 + 0.601050i 0.920130 0.391612i \(-0.128082\pi\)
0.120919 + 0.992662i \(0.461416\pi\)
\(152\) 0.649165i 0.0526543i
\(153\) 0.519810 10.5866i 0.0420242 0.855873i
\(154\) 7.24222 + 1.62427i 0.583594 + 0.130888i
\(155\) 7.23389 + 4.17649i 0.581040 + 0.335463i
\(156\) −1.26978 5.25085i −0.101664 0.420405i
\(157\) −4.61431 7.99222i −0.368262 0.637849i 0.621032 0.783785i \(-0.286714\pi\)
−0.989294 + 0.145937i \(0.953380\pi\)
\(158\) −2.59056 + 1.49566i −0.206094 + 0.118988i
\(159\) −4.95820 + 4.72072i −0.393211 + 0.374378i
\(160\) −0.866025 0.500000i −0.0684653 0.0395285i
\(161\) −4.46557 −0.351936
\(162\) 5.24192 7.31589i 0.411844 0.574791i
\(163\) −1.69270 −0.132582 −0.0662912 0.997800i \(-0.521117\pi\)
−0.0662912 + 0.997800i \(0.521117\pi\)
\(164\) 1.38401 2.39717i 0.108073 0.187188i
\(165\) −2.95467 4.92645i −0.230021 0.383524i
\(166\) −4.91742 8.51723i −0.381666 0.661065i
\(167\) −8.19719 14.1980i −0.634318 1.09867i −0.986659 0.162799i \(-0.947948\pi\)
0.352341 0.935872i \(-0.385386\pi\)
\(168\) 0.911067 + 3.76748i 0.0702903 + 0.290668i
\(169\) −1.63603 + 2.83369i −0.125849 + 0.217976i
\(170\) 3.53311i 0.270977i
\(171\) −1.94515 0.0955088i −0.148750 0.00730374i
\(172\) 11.5667i 0.881950i
\(173\) 10.2188 17.6995i 0.776923 1.34567i −0.156784 0.987633i \(-0.550113\pi\)
0.933707 0.358037i \(-0.116554\pi\)
\(174\) 0.0520206 0.176688i 0.00394367 0.0133947i
\(175\) −1.93804 + 1.11893i −0.146502 + 0.0845830i
\(176\) −3.16557 + 0.989540i −0.238614 + 0.0745894i
\(177\) 5.37892 + 1.58367i 0.404305 + 0.119036i
\(178\) 0.232994 + 0.134519i 0.0174637 + 0.0100827i
\(179\) 20.0246i 1.49671i 0.663297 + 0.748356i \(0.269156\pi\)
−0.663297 + 0.748356i \(0.730844\pi\)
\(180\) 1.62561 2.52139i 0.121166 0.187933i
\(181\) −22.3978 −1.66482 −0.832408 0.554163i \(-0.813038\pi\)
−0.832408 + 0.554163i \(0.813038\pi\)
\(182\) −3.48989 + 6.04467i −0.258688 + 0.448061i
\(183\) −5.36229 22.1744i −0.396392 1.63918i
\(184\) 1.72813 0.997734i 0.127399 0.0735539i
\(185\) −2.60080 + 1.50157i −0.191215 + 0.110398i
\(186\) 9.97625 + 10.4781i 0.731494 + 0.768292i
\(187\) −8.61990 7.93780i −0.630350 0.580470i
\(188\) 6.47601i 0.472311i
\(189\) −11.4229 + 2.17562i −0.830893 + 0.158253i
\(190\) −0.649165 −0.0470954
\(191\) 1.37544 + 0.794110i 0.0995233 + 0.0574598i 0.548936 0.835865i \(-0.315033\pi\)
−0.449412 + 0.893324i \(0.648367\pi\)
\(192\) −1.19434 1.25442i −0.0861937 0.0905298i
\(193\) −22.3683 + 12.9144i −1.61011 + 0.929596i −0.620763 + 0.783998i \(0.713177\pi\)
−0.989344 + 0.145597i \(0.953490\pi\)
\(194\) −2.53151 4.38471i −0.181752 0.314804i
\(195\) 5.25085 1.26978i 0.376021 0.0909309i
\(196\) −0.996003 + 1.72513i −0.0711430 + 0.123223i
\(197\) −20.0332 −1.42730 −0.713652 0.700500i \(-0.752960\pi\)
−0.713652 + 0.700500i \(0.752960\pi\)
\(198\) −2.49931 9.63086i −0.177618 0.684435i
\(199\) 1.63362 0.115804 0.0579022 0.998322i \(-0.481559\pi\)
0.0579022 + 0.998322i \(0.481559\pi\)
\(200\) 0.500000 0.866025i 0.0353553 0.0612372i
\(201\) 4.80860 16.3324i 0.339173 1.15200i
\(202\) 0.625489 + 1.08338i 0.0440092 + 0.0762262i
\(203\) −0.206092 + 0.118987i −0.0144648 + 0.00835127i
\(204\) 1.72836 5.87038i 0.121009 0.411009i
\(205\) 2.39717 + 1.38401i 0.167426 + 0.0966633i
\(206\) −8.69595 −0.605876
\(207\) 2.73535 + 5.32493i 0.190120 + 0.370108i
\(208\) 3.11896i 0.216261i
\(209\) −1.45847 + 1.58380i −0.100885 + 0.109554i
\(210\) −3.76748 + 0.911067i −0.259981 + 0.0628696i
\(211\) 13.8809 8.01412i 0.955598 0.551715i 0.0607823 0.998151i \(-0.480640\pi\)
0.894815 + 0.446437i \(0.147307\pi\)
\(212\) −3.42305 + 1.97630i −0.235096 + 0.135733i
\(213\) −1.46096 + 1.39099i −0.100103 + 0.0953089i
\(214\) 3.73958 6.47714i 0.255632 0.442768i
\(215\) 11.5667 0.788840
\(216\) 3.93444 3.39414i 0.267705 0.230942i
\(217\) 18.6927i 1.26895i
\(218\) −9.87786 5.70298i −0.669013 0.386255i
\(219\) −1.76071 + 1.67638i −0.118978 + 0.113279i
\(220\) −0.989540 3.16557i −0.0667148 0.213422i
\(221\) 9.54329 5.50982i 0.641951 0.370630i
\(222\) −5.05588 + 1.22263i −0.339328 + 0.0820576i
\(223\) −4.23876 + 7.34175i −0.283848 + 0.491640i −0.972329 0.233615i \(-0.924945\pi\)
0.688481 + 0.725255i \(0.258278\pi\)
\(224\) 2.23785i 0.149523i
\(225\) 2.52139 + 1.62561i 0.168092 + 0.108374i
\(226\) 12.9946i 0.864387i
\(227\) 3.63551 6.29688i 0.241297 0.417939i −0.719787 0.694195i \(-0.755761\pi\)
0.961084 + 0.276256i \(0.0890938\pi\)
\(228\) −1.07861 0.317565i −0.0714327 0.0210312i
\(229\) −7.10018 12.2979i −0.469193 0.812667i 0.530186 0.847881i \(-0.322122\pi\)
−0.999380 + 0.0352143i \(0.988789\pi\)
\(230\) 0.997734 + 1.72813i 0.0657886 + 0.113949i
\(231\) −6.24160 + 11.2386i −0.410667 + 0.739446i
\(232\) 0.0531702 0.0920935i 0.00349080 0.00604623i
\(233\) 1.86696 0.122308 0.0611542 0.998128i \(-0.480522\pi\)
0.0611542 + 0.998128i \(0.480522\pi\)
\(234\) 9.34563 + 0.458879i 0.610943 + 0.0299979i
\(235\) 6.47601 0.422448
\(236\) 2.80361 + 1.61866i 0.182499 + 0.105366i
\(237\) −1.21782 5.03597i −0.0791057 0.327121i
\(238\) −6.84730 + 3.95329i −0.443845 + 0.256254i
\(239\) −12.8822 22.3127i −0.833282 1.44329i −0.895421 0.445220i \(-0.853125\pi\)
0.0621388 0.998068i \(-0.480208\pi\)
\(240\) 1.25442 1.19434i 0.0809723 0.0770940i
\(241\) 26.3093 + 15.1897i 1.69473 + 0.978454i 0.950598 + 0.310423i \(0.100471\pi\)
0.744134 + 0.668031i \(0.232863\pi\)
\(242\) −9.94638 4.69782i −0.639378 0.301987i
\(243\) 9.59131 + 12.2885i 0.615283 + 0.788307i
\(244\) 13.1714i 0.843212i
\(245\) −1.72513 0.996003i −0.110214 0.0636323i
\(246\) 3.30594 + 3.47225i 0.210779 + 0.221382i
\(247\) −1.01236 1.75346i −0.0644150 0.111570i
\(248\) 4.17649 + 7.23389i 0.265207 + 0.459352i
\(249\) 16.5572 4.00392i 1.04927 0.253738i
\(250\) 0.866025 + 0.500000i 0.0547723 + 0.0316228i
\(251\) 0.648202i 0.0409141i 0.999791 + 0.0204571i \(0.00651214\pi\)
−0.999791 + 0.0204571i \(0.993488\pi\)
\(252\) −6.70549 0.329246i −0.422406 0.0207405i
\(253\) 6.45780 + 1.44834i 0.405998 + 0.0910566i
\(254\) −3.01086 1.73832i −0.188918 0.109072i
\(255\) 5.87038 + 1.72836i 0.367617 + 0.108234i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 1.78451 1.03029i 0.111315 0.0642677i −0.443309 0.896369i \(-0.646196\pi\)
0.554624 + 0.832101i \(0.312862\pi\)
\(258\) 19.2184 + 5.65829i 1.19649 + 0.352270i
\(259\) 5.82022 + 3.36031i 0.361651 + 0.208799i
\(260\) 3.11896 0.193430
\(261\) 0.268125 + 0.172868i 0.0165965 + 0.0107003i
\(262\) 3.72823 0.230331
\(263\) 4.15995 7.20525i 0.256514 0.444295i −0.708792 0.705418i \(-0.750759\pi\)
0.965306 + 0.261123i \(0.0840928\pi\)
\(264\) −0.0955921 5.74377i −0.00588329 0.353504i
\(265\) −1.97630 3.42305i −0.121403 0.210276i
\(266\) 0.726369 + 1.25811i 0.0445365 + 0.0771395i
\(267\) −0.337487 + 0.321323i −0.0206539 + 0.0196646i
\(268\) 4.91487 8.51280i 0.300223 0.520002i
\(269\) 7.13974i 0.435318i −0.976025 0.217659i \(-0.930158\pi\)
0.976025 0.217659i \(-0.0698420\pi\)
\(270\) 3.39414 + 3.93444i 0.206561 + 0.239442i
\(271\) 25.6730i 1.55952i −0.626076 0.779762i \(-0.715340\pi\)
0.626076 0.779762i \(-0.284660\pi\)
\(272\) 1.76655 3.05976i 0.107113 0.185525i
\(273\) −8.33621 8.75557i −0.504530 0.529911i
\(274\) −2.31644 + 1.33740i −0.139942 + 0.0807953i
\(275\) 3.16557 0.989540i 0.190891 0.0596715i
\(276\) 0.812388 + 3.35942i 0.0489000 + 0.202213i
\(277\) 15.8621 + 9.15799i 0.953061 + 0.550250i 0.894031 0.448006i \(-0.147866\pi\)
0.0590307 + 0.998256i \(0.481199\pi\)
\(278\) 7.80388i 0.468046i
\(279\) −22.2900 + 11.4501i −1.33447 + 0.685499i
\(280\) −2.23785 −0.133737
\(281\) −11.3351 + 19.6330i −0.676196 + 1.17121i 0.299922 + 0.953964i \(0.403039\pi\)
−0.976118 + 0.217242i \(0.930294\pi\)
\(282\) 10.7601 + 3.16799i 0.640755 + 0.188651i
\(283\) −25.3797 + 14.6530i −1.50867 + 0.871029i −0.508718 + 0.860933i \(0.669880\pi\)
−0.999949 + 0.0100962i \(0.996786\pi\)
\(284\) −1.00862 + 0.582327i −0.0598506 + 0.0345547i
\(285\) 0.317565 1.07861i 0.0188109 0.0638913i
\(286\) 7.00735 7.60949i 0.414353 0.449959i
\(287\) 6.19442i 0.365645i
\(288\) 2.66851 1.37078i 0.157244 0.0807740i
\(289\) −4.51715 −0.265715
\(290\) 0.0920935 + 0.0531702i 0.00540792 + 0.00312226i
\(291\) 8.52373 2.06124i 0.499670 0.120832i
\(292\) −1.21556 + 0.701804i −0.0711353 + 0.0410700i
\(293\) 10.2552 + 17.7625i 0.599113 + 1.03769i 0.992952 + 0.118515i \(0.0378133\pi\)
−0.393839 + 0.919179i \(0.628853\pi\)
\(294\) −2.37912 2.49881i −0.138753 0.145733i
\(295\) −1.61866 + 2.80361i −0.0942422 + 0.163232i
\(296\) −3.00315 −0.174554
\(297\) 17.2246 + 0.558624i 0.999475 + 0.0324146i
\(298\) 0.0648171 0.00375475
\(299\) −3.11190 + 5.38996i −0.179966 + 0.311710i
\(300\) 1.19434 + 1.25442i 0.0689550 + 0.0724238i
\(301\) −12.9423 22.4166i −0.745979 1.29207i
\(302\) −12.7926 + 7.38583i −0.736133 + 0.425007i
\(303\) −2.10605 + 0.509293i −0.120990 + 0.0292581i
\(304\) −0.562194 0.324583i −0.0322440 0.0186161i
\(305\) 13.1714 0.754192
\(306\) 8.90833 + 5.74345i 0.509256 + 0.328331i
\(307\) 21.7811i 1.24311i −0.783369 0.621557i \(-0.786500\pi\)
0.783369 0.621557i \(-0.213500\pi\)
\(308\) −5.02777 + 5.45981i −0.286484 + 0.311101i
\(309\) 4.25397 14.4486i 0.242000 0.821953i
\(310\) −7.23389 + 4.17649i −0.410857 + 0.237208i
\(311\) −1.76080 + 1.01660i −0.0998460 + 0.0576461i −0.549092 0.835762i \(-0.685026\pi\)
0.449246 + 0.893408i \(0.351693\pi\)
\(312\) 5.18226 + 1.52576i 0.293388 + 0.0863794i
\(313\) −12.2823 + 21.2735i −0.694235 + 1.20245i 0.276202 + 0.961100i \(0.410924\pi\)
−0.970438 + 0.241352i \(0.922409\pi\)
\(314\) 9.22862 0.520801
\(315\) 0.329246 6.70549i 0.0185509 0.377811i
\(316\) 2.99132i 0.168275i
\(317\) 15.0163 + 8.66967i 0.843400 + 0.486937i 0.858418 0.512950i \(-0.171447\pi\)
−0.0150187 + 0.999887i \(0.504781\pi\)
\(318\) −1.60916 6.65429i −0.0902375 0.373154i
\(319\) 0.336628 0.105228i 0.0188475 0.00589164i
\(320\) 0.866025 0.500000i 0.0484123 0.0279508i
\(321\) 8.93262 + 9.38199i 0.498570 + 0.523651i
\(322\) 2.23278 3.86730i 0.124428 0.215516i
\(323\) 2.29357i 0.127618i
\(324\) 3.71479 + 8.19758i 0.206377 + 0.455421i
\(325\) 3.11896i 0.173009i
\(326\) 0.846349 1.46592i 0.0468749 0.0811898i
\(327\) 14.3078 13.6225i 0.791225 0.753329i
\(328\) 1.38401 + 2.39717i 0.0764190 + 0.132362i
\(329\) −7.24618 12.5508i −0.399495 0.691945i
\(330\) 5.74377 0.0955921i 0.316184 0.00526217i
\(331\) 8.70296 15.0740i 0.478358 0.828541i −0.521334 0.853353i \(-0.674565\pi\)
0.999692 + 0.0248121i \(0.00789874\pi\)
\(332\) 9.83485 0.539757
\(333\) 0.441840 8.99861i 0.0242127 0.493121i
\(334\) 16.3944 0.897061
\(335\) 8.51280 + 4.91487i 0.465104 + 0.268528i
\(336\) −3.71827 1.09474i −0.202848 0.0597227i
\(337\) 12.1230 6.99923i 0.660383 0.381272i −0.132040 0.991244i \(-0.542153\pi\)
0.792423 + 0.609972i \(0.208819\pi\)
\(338\) −1.63603 2.83369i −0.0889884 0.154132i
\(339\) −21.5909 6.35681i −1.17266 0.345255i
\(340\) 3.05976 + 1.76655i 0.165939 + 0.0958048i
\(341\) −6.06272 + 27.0321i −0.328315 + 1.46387i
\(342\) 1.05529 1.63680i 0.0570635 0.0885078i
\(343\) 20.1228i 1.08653i
\(344\) 10.0170 + 5.78333i 0.540082 + 0.311816i
\(345\) −3.35942 + 0.812388i −0.180865 + 0.0437375i
\(346\) 10.2188 + 17.6995i 0.549368 + 0.951533i
\(347\) 13.0830 + 22.6604i 0.702332 + 1.21648i 0.967646 + 0.252313i \(0.0811912\pi\)
−0.265314 + 0.964162i \(0.585475\pi\)
\(348\) 0.127006 + 0.133395i 0.00680824 + 0.00715074i
\(349\) −27.7358 16.0132i −1.48466 0.857170i −0.484814 0.874618i \(-0.661113\pi\)
−0.999848 + 0.0174479i \(0.994446\pi\)
\(350\) 2.23785i 0.119618i
\(351\) −5.33423 + 15.3036i −0.284720 + 0.816846i
\(352\) 0.725816 3.23623i 0.0386861 0.172492i
\(353\) −20.2217 11.6750i −1.07629 0.621397i −0.146398 0.989226i \(-0.546768\pi\)
−0.929894 + 0.367829i \(0.880101\pi\)
\(354\) −4.06096 + 3.86645i −0.215837 + 0.205500i
\(355\) −0.582327 1.00862i −0.0309067 0.0535320i
\(356\) −0.232994 + 0.134519i −0.0123487 + 0.00712952i
\(357\) −3.21890 13.3109i −0.170362 0.704489i
\(358\) −17.3418 10.0123i −0.916545 0.529168i
\(359\) 18.2033 0.960731 0.480366 0.877068i \(-0.340504\pi\)
0.480366 + 0.877068i \(0.340504\pi\)
\(360\) 1.37078 + 2.66851i 0.0722465 + 0.140643i
\(361\) 18.5786 0.977820
\(362\) 11.1989 19.3971i 0.588602 1.01949i
\(363\) 12.6712 14.2281i 0.665068 0.746783i
\(364\) −3.48989 6.04467i −0.182920 0.316827i
\(365\) −0.701804 1.21556i −0.0367341 0.0636253i
\(366\) 21.8847 + 6.44331i 1.14393 + 0.336797i
\(367\) −10.7997 + 18.7057i −0.563741 + 0.976428i 0.433425 + 0.901190i \(0.357305\pi\)
−0.997166 + 0.0752382i \(0.976028\pi\)
\(368\) 1.99547i 0.104021i
\(369\) −7.38648 + 3.79434i −0.384525 + 0.197526i
\(370\) 3.00315i 0.156126i
\(371\) −4.42266 + 7.66028i −0.229613 + 0.397702i
\(372\) −14.0624 + 3.40063i −0.729103 + 0.176314i
\(373\) −5.03375 + 2.90624i −0.260638 + 0.150479i −0.624626 0.780924i \(-0.714748\pi\)
0.363988 + 0.931404i \(0.381415\pi\)
\(374\) 11.1843 3.49615i 0.578326 0.180782i
\(375\) −1.25442 + 1.19434i −0.0647778 + 0.0616752i
\(376\) 5.60838 + 3.23800i 0.289230 + 0.166987i
\(377\) 0.331672i 0.0170820i
\(378\) 3.82731 10.9803i 0.196855 0.564767i
\(379\) −35.6346 −1.83043 −0.915213 0.402970i \(-0.867978\pi\)
−0.915213 + 0.402970i \(0.867978\pi\)
\(380\) 0.324583 0.562194i 0.0166507 0.0288399i
\(381\) 4.36117 4.15228i 0.223429 0.212728i
\(382\) −1.37544 + 0.794110i −0.0703736 + 0.0406302i
\(383\) −24.4144 + 14.0957i −1.24752 + 0.720254i −0.970614 0.240644i \(-0.922641\pi\)
−0.276903 + 0.960898i \(0.589308\pi\)
\(384\) 1.68352 0.407116i 0.0859120 0.0207756i
\(385\) −5.45981 5.02777i −0.278258 0.256239i
\(386\) 25.8287i 1.31465i
\(387\) −18.8029 + 29.1640i −0.955804 + 1.48249i
\(388\) 5.06302 0.257036
\(389\) −1.82484 1.05357i −0.0925229 0.0534181i 0.453025 0.891498i \(-0.350345\pi\)
−0.545548 + 0.838080i \(0.683678\pi\)
\(390\) −1.52576 + 5.18226i −0.0772601 + 0.262414i
\(391\) −6.10566 + 3.52510i −0.308776 + 0.178272i
\(392\) −0.996003 1.72513i −0.0503057 0.0871321i
\(393\) −1.82381 + 6.19458i −0.0919991 + 0.312475i
\(394\) 10.0166 17.3492i 0.504628 0.874042i
\(395\) 2.99132 0.150510
\(396\) 9.59022 + 2.65096i 0.481927 + 0.133216i
\(397\) 10.4728 0.525615 0.262808 0.964848i \(-0.415352\pi\)
0.262808 + 0.964848i \(0.415352\pi\)
\(398\) −0.816811 + 1.41476i −0.0409430 + 0.0709154i
\(399\) −2.44572 + 0.591433i −0.122439 + 0.0296087i
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) −21.0553 + 12.1563i −1.05145 + 0.607055i −0.923055 0.384668i \(-0.874316\pi\)
−0.128396 + 0.991723i \(0.540983\pi\)
\(402\) 11.7400 + 12.3306i 0.585538 + 0.614994i
\(403\) −22.5622 13.0263i −1.12390 0.648887i
\(404\) −1.25098 −0.0622385
\(405\) −8.19758 + 3.71479i −0.407341 + 0.184589i
\(406\) 0.237974i 0.0118105i
\(407\) −7.32693 6.74715i −0.363183 0.334444i
\(408\) 4.21972 + 4.43199i 0.208907 + 0.219416i
\(409\) −26.4890 + 15.2934i −1.30980 + 0.756212i −0.982062 0.188557i \(-0.939619\pi\)
−0.327736 + 0.944769i \(0.606286\pi\)
\(410\) −2.39717 + 1.38401i −0.118388 + 0.0683513i
\(411\) −1.08895 4.50309i −0.0537142 0.222121i
\(412\) 4.34798 7.53091i 0.214209 0.371022i
\(413\) 7.24466 0.356487
\(414\) −5.97920 0.293584i −0.293862 0.0144289i
\(415\) 9.83485i 0.482774i
\(416\) 2.70110 + 1.55948i 0.132432 + 0.0764599i
\(417\) −12.9664 3.81758i −0.634968 0.186948i
\(418\) −0.642375 2.05498i −0.0314196 0.100512i
\(419\) 17.5066 10.1075i 0.855255 0.493782i −0.00716547 0.999974i \(-0.502281\pi\)
0.862420 + 0.506193i \(0.168948\pi\)
\(420\) 1.09474 3.71827i 0.0534176 0.181433i
\(421\) −4.03827 + 6.99449i −0.196813 + 0.340891i −0.947493 0.319775i \(-0.896393\pi\)
0.750680 + 0.660666i \(0.229726\pi\)
\(422\) 16.0282i 0.780242i
\(423\) −10.5275 + 16.3285i −0.511862 + 0.793920i
\(424\) 3.95259i 0.191955i
\(425\) −1.76655 + 3.05976i −0.0856905 + 0.148420i
\(426\) −0.474149 1.96072i −0.0229726 0.0949974i
\(427\) −14.7378 25.5267i −0.713214 1.23532i
\(428\) 3.73958 + 6.47714i 0.180759 + 0.313084i
\(429\) 9.21551 + 15.3654i 0.444929 + 0.741850i
\(430\) −5.78333 + 10.0170i −0.278897 + 0.483064i
\(431\) 17.0692 0.822197 0.411098 0.911591i \(-0.365145\pi\)
0.411098 + 0.911591i \(0.365145\pi\)
\(432\) 0.972189 + 5.10439i 0.0467745 + 0.245585i
\(433\) −40.2925 −1.93634 −0.968168 0.250303i \(-0.919470\pi\)
−0.968168 + 0.250303i \(0.919470\pi\)
\(434\) 16.1884 + 9.34637i 0.777067 + 0.448640i
\(435\) −0.133395 + 0.127006i −0.00639581 + 0.00608948i
\(436\) 9.87786 5.70298i 0.473063 0.273123i
\(437\) 0.647694 + 1.12184i 0.0309834 + 0.0536649i
\(438\) −0.571432 2.36301i −0.0273041 0.112909i
\(439\) 18.7045 + 10.7991i 0.892719 + 0.515411i 0.874831 0.484429i \(-0.160972\pi\)
0.0178880 + 0.999840i \(0.494306\pi\)
\(440\) 3.23623 + 0.725816i 0.154281 + 0.0346019i
\(441\) 5.31569 2.73060i 0.253128 0.130029i
\(442\) 11.0196i 0.524151i
\(443\) −14.2248 8.21271i −0.675842 0.390198i 0.122445 0.992475i \(-0.460927\pi\)
−0.798287 + 0.602278i \(0.794260\pi\)
\(444\) 1.46911 4.98983i 0.0697208 0.236807i
\(445\) −0.134519 0.232994i −0.00637683 0.0110450i
\(446\) −4.23876 7.34175i −0.200711 0.347642i
\(447\) −0.0317078 + 0.107696i −0.00149973 + 0.00509384i
\(448\) −1.93804 1.11893i −0.0915637 0.0528644i
\(449\) 22.2449i 1.04980i 0.851163 + 0.524901i \(0.175898\pi\)
−0.851163 + 0.524901i \(0.824102\pi\)
\(450\) −2.66851 + 1.37078i −0.125795 + 0.0646192i
\(451\) −2.00907 + 8.95794i −0.0946034 + 0.421813i
\(452\) −11.2536 6.49729i −0.529327 0.305607i
\(453\) −6.01378 24.8685i −0.282552 1.16842i
\(454\) 3.63551 + 6.29688i 0.170623 + 0.295527i
\(455\) 6.04467 3.48989i 0.283379 0.163609i
\(456\) 0.814324 0.775321i 0.0381342 0.0363077i
\(457\) 9.07476 + 5.23932i 0.424500 + 0.245085i 0.697001 0.717071i \(-0.254517\pi\)
−0.272501 + 0.962155i \(0.587851\pi\)
\(458\) 14.2004 0.663540
\(459\) −13.9008 + 11.9919i −0.648834 + 0.559732i
\(460\) −1.99547 −0.0930392
\(461\) 13.9519 24.1654i 0.649804 1.12549i −0.333365 0.942798i \(-0.608184\pi\)
0.983169 0.182696i \(-0.0584825\pi\)
\(462\) −6.61212 11.0247i −0.307624 0.512915i
\(463\) 20.7852 + 36.0010i 0.965970 + 1.67311i 0.706986 + 0.707227i \(0.250054\pi\)
0.258983 + 0.965882i \(0.416613\pi\)
\(464\) 0.0531702 + 0.0920935i 0.00246837 + 0.00427533i
\(465\) −3.40063 14.0624i −0.157700 0.652130i
\(466\) −0.933478 + 1.61683i −0.0432425 + 0.0748983i
\(467\) 34.8128i 1.61095i −0.592632 0.805473i \(-0.701911\pi\)
0.592632 0.805473i \(-0.298089\pi\)
\(468\) −5.07022 + 7.86412i −0.234371 + 0.363519i
\(469\) 21.9975i 1.01575i
\(470\) −3.23800 + 5.60838i −0.149358 + 0.258696i
\(471\) −4.51455 + 15.3337i −0.208019 + 0.706538i
\(472\) −2.80361 + 1.61866i −0.129046 + 0.0745050i
\(473\) 11.4457 + 36.6150i 0.526273 + 1.68356i
\(474\) 4.97018 + 1.46332i 0.228288 + 0.0672127i
\(475\) 0.562194 + 0.324583i 0.0257952 + 0.0148929i
\(476\) 7.90658i 0.362398i
\(477\) 11.8435 + 0.581527i 0.542277 + 0.0266263i
\(478\) 25.7645 1.17844
\(479\) −18.0153 + 31.2034i −0.823139 + 1.42572i 0.0801944 + 0.996779i \(0.474446\pi\)
−0.903333 + 0.428939i \(0.858887\pi\)
\(480\) 0.407116 + 1.68352i 0.0185822 + 0.0768421i
\(481\) 8.11181 4.68336i 0.369867 0.213543i
\(482\) −26.3093 + 15.1897i −1.19836 + 0.691872i
\(483\) 5.33339 + 5.60169i 0.242678 + 0.254886i
\(484\) 9.04162 6.26491i 0.410983 0.284769i
\(485\) 5.06302i 0.229900i
\(486\) −15.4378 + 2.16207i −0.700272 + 0.0980736i
\(487\) 23.2302 1.05266 0.526331 0.850280i \(-0.323567\pi\)
0.526331 + 0.850280i \(0.323567\pi\)
\(488\) 11.4068 + 6.58570i 0.516360 + 0.298121i
\(489\) 2.02165 + 2.12335i 0.0914221 + 0.0960212i
\(490\) 1.72513 0.996003i 0.0779333 0.0449948i
\(491\) −14.0156 24.2757i −0.632514 1.09555i −0.987036 0.160499i \(-0.948690\pi\)
0.354521 0.935048i \(-0.384644\pi\)
\(492\) −4.66002 + 1.12690i −0.210090 + 0.0508047i
\(493\) −0.187856 + 0.325376i −0.00846061 + 0.0146542i
\(494\) 2.02472 0.0910966
\(495\) −2.65096 + 9.59022i −0.119152 + 0.431049i
\(496\) −8.35297 −0.375059
\(497\) −1.30316 + 2.25714i −0.0584549 + 0.101247i
\(498\) −4.81110 + 16.3409i −0.215591 + 0.732254i
\(499\) 9.73187 + 16.8561i 0.435658 + 0.754582i 0.997349 0.0727649i \(-0.0231823\pi\)
−0.561691 + 0.827347i \(0.689849\pi\)
\(500\) −0.866025 + 0.500000i −0.0387298 + 0.0223607i
\(501\) −8.01996 + 27.2398i −0.358305 + 1.21699i
\(502\) −0.561359 0.324101i −0.0250547 0.0144653i
\(503\) 25.6161 1.14217 0.571083 0.820892i \(-0.306523\pi\)
0.571083 + 0.820892i \(0.306523\pi\)
\(504\) 3.63788 5.64250i 0.162044 0.251337i
\(505\) 1.25098i 0.0556678i
\(506\) −4.48320 + 4.86844i −0.199303 + 0.216429i
\(507\) 5.50860 1.33211i 0.244646 0.0591611i
\(508\) 3.01086 1.73832i 0.133586 0.0771256i
\(509\) −6.65944 + 3.84483i −0.295175 + 0.170419i −0.640273 0.768147i \(-0.721179\pi\)
0.345098 + 0.938566i \(0.387846\pi\)
\(510\) −4.43199 + 4.21972i −0.196252 + 0.186852i
\(511\) −1.57054 + 2.72025i −0.0694764 + 0.120337i
\(512\) 1.00000 0.0441942
\(513\) 2.20336 + 2.55410i 0.0972806 + 0.112766i
\(514\) 2.06058i 0.0908883i
\(515\) 7.53091 + 4.34798i 0.331852 + 0.191595i
\(516\) −14.5094 + 13.8145i −0.638742 + 0.608148i
\(517\) 6.40827 + 20.5002i 0.281835 + 0.901599i
\(518\) −5.82022 + 3.36031i −0.255726 + 0.147643i
\(519\) −34.4073 + 8.32050i −1.51031 + 0.365229i
\(520\) −1.55948 + 2.70110i −0.0683878 + 0.118451i
\(521\) 9.19977i 0.403049i 0.979483 + 0.201525i \(0.0645896\pi\)
−0.979483 + 0.201525i \(0.935410\pi\)
\(522\) −0.283771 + 0.145769i −0.0124203 + 0.00638015i
\(523\) 19.8490i 0.867937i −0.900928 0.433968i \(-0.857113\pi\)
0.900928 0.433968i \(-0.142887\pi\)
\(524\) −1.86412 + 3.22874i −0.0814343 + 0.141048i
\(525\) 3.71827 + 1.09474i 0.162279 + 0.0477782i
\(526\) 4.15995 + 7.20525i 0.181383 + 0.314164i
\(527\) −14.7560 25.5581i −0.642780 1.11333i
\(528\) 5.02204 + 2.78910i 0.218556 + 0.121380i
\(529\) −9.50905 + 16.4702i −0.413437 + 0.716094i
\(530\) 3.95259 0.171690
\(531\) −4.43766 8.63884i −0.192578 0.374894i
\(532\) −1.45274 −0.0629842
\(533\) −7.47669 4.31667i −0.323851 0.186976i
\(534\) −0.109530 0.452934i −0.00473983 0.0196004i
\(535\) −6.47714 + 3.73958i −0.280031 + 0.161676i
\(536\) 4.91487 + 8.51280i 0.212290 + 0.367697i
\(537\) 25.1193 23.9161i 1.08398 1.03206i
\(538\) 6.18320 + 3.56987i 0.266577 + 0.153908i
\(539\) 1.44583 6.44659i 0.0622763 0.277674i
\(540\) −5.10439 + 0.972189i −0.219658 + 0.0418364i
\(541\) 21.7443i 0.934859i −0.884030 0.467429i \(-0.845180\pi\)
0.884030 0.467429i \(-0.154820\pi\)
\(542\) 22.2335 + 12.8365i 0.955009 + 0.551375i
\(543\) 26.7505 + 28.0962i 1.14797 + 1.20572i
\(544\) 1.76655 + 3.05976i 0.0757404 + 0.131186i
\(545\) 5.70298 + 9.87786i 0.244289 + 0.423121i
\(546\) 11.7506 2.84159i 0.502881 0.121609i
\(547\) 19.2159 + 11.0943i 0.821611 + 0.474357i 0.850972 0.525211i \(-0.176014\pi\)
−0.0293606 + 0.999569i \(0.509347\pi\)
\(548\) 2.67480i 0.114262i
\(549\) −21.4115 + 33.2102i −0.913823 + 1.41738i
\(550\) −0.725816 + 3.23623i −0.0309489 + 0.137993i
\(551\) 0.0597839 + 0.0345163i 0.00254688 + 0.00147044i
\(552\) −3.31554 0.976162i −0.141119 0.0415482i
\(553\) −3.34707 5.79730i −0.142332 0.246526i
\(554\) −15.8621 + 9.15799i −0.673916 + 0.389086i
\(555\) 4.98983 + 1.46911i 0.211807 + 0.0623602i
\(556\) −6.75836 3.90194i −0.286618 0.165479i
\(557\) −10.9699 −0.464808 −0.232404 0.972619i \(-0.574659\pi\)
−0.232404 + 0.972619i \(0.574659\pi\)
\(558\) 1.22894 25.0288i 0.0520250 1.05955i
\(559\) −36.0760 −1.52585
\(560\) 1.11893 1.93804i 0.0472833 0.0818971i
\(561\) 0.337737 + 20.2933i 0.0142593 + 0.856786i
\(562\) −11.3351 19.6330i −0.478143 0.828168i
\(563\) 11.9763 + 20.7435i 0.504740 + 0.874236i 0.999985 + 0.00548240i \(0.00174511\pi\)
−0.495245 + 0.868754i \(0.664922\pi\)
\(564\) −8.12361 + 7.73452i −0.342066 + 0.325682i
\(565\) 6.49729 11.2536i 0.273343 0.473444i
\(566\) 29.3060i 1.23182i
\(567\) 16.3719 + 11.7307i 0.687555 + 0.492641i
\(568\) 1.16465i 0.0488678i
\(569\) 7.37244 12.7694i 0.309069 0.535322i −0.669090 0.743181i \(-0.733316\pi\)
0.978159 + 0.207859i \(0.0666494\pi\)
\(570\) 0.775321 + 0.814324i 0.0324746 + 0.0341083i
\(571\) 16.8538 9.73053i 0.705309 0.407210i −0.104013 0.994576i \(-0.533168\pi\)
0.809322 + 0.587366i \(0.199835\pi\)
\(572\) 3.08634 + 9.87329i 0.129046 + 0.412823i
\(573\) −0.646590 2.67381i −0.0270117 0.111700i
\(574\) 5.36452 + 3.09721i 0.223911 + 0.129275i
\(575\) 1.99547i 0.0832168i
\(576\) −0.147126 + 2.99639i −0.00613023 + 0.124850i
\(577\) −30.7153 −1.27869 −0.639347 0.768919i \(-0.720795\pi\)
−0.639347 + 0.768919i \(0.720795\pi\)
\(578\) 2.25857 3.91197i 0.0939443 0.162716i
\(579\) 42.9153 + 12.6351i 1.78350 + 0.525098i
\(580\) −0.0920935 + 0.0531702i −0.00382397 + 0.00220777i
\(581\) 19.0603 11.0045i 0.790755 0.456543i
\(582\) −2.47678 + 8.41238i −0.102666 + 0.348704i
\(583\) 8.88025 9.64334i 0.367783 0.399386i
\(584\) 1.40361i 0.0580817i
\(585\) −7.86412 5.07022i −0.325141 0.209628i
\(586\) −20.5103 −0.847274
\(587\) −16.3401 9.43395i −0.674427 0.389381i 0.123325 0.992366i \(-0.460644\pi\)
−0.797752 + 0.602986i \(0.793978\pi\)
\(588\) 3.35359 0.810978i 0.138300 0.0334442i
\(589\) −4.69599 + 2.71123i −0.193495 + 0.111714i
\(590\) −1.61866 2.80361i −0.0666393 0.115423i
\(591\) 23.9263 + 25.1300i 0.984197 + 1.03371i
\(592\) 1.50157 2.60080i 0.0617143 0.106892i
\(593\) 17.7380 0.728413 0.364206 0.931318i \(-0.381340\pi\)
0.364206 + 0.931318i \(0.381340\pi\)
\(594\) −9.09610 + 14.6377i −0.373217 + 0.600590i
\(595\) 7.90658 0.324138
\(596\) −0.0324085 + 0.0561333i −0.00132751 + 0.00229931i
\(597\) −1.95109 2.04924i −0.0798529 0.0838699i
\(598\) −3.11190 5.38996i −0.127255 0.220412i
\(599\) 31.6791 18.2899i 1.29437 0.747306i 0.314946 0.949109i \(-0.398013\pi\)
0.979426 + 0.201803i \(0.0646801\pi\)
\(600\) −1.68352 + 0.407116i −0.0687296 + 0.0166204i
\(601\) −18.8025 10.8556i −0.766971 0.442811i 0.0648219 0.997897i \(-0.479352\pi\)
−0.831793 + 0.555086i \(0.812685\pi\)
\(602\) 25.8845 1.05497
\(603\) −26.2308 + 13.4744i −1.06820 + 0.548720i
\(604\) 14.7717i 0.601050i
\(605\) 6.26491 + 9.04162i 0.254705 + 0.367594i
\(606\) 0.611965 2.07854i 0.0248594 0.0844350i
\(607\) −2.44027 + 1.40889i −0.0990475 + 0.0571851i −0.548706 0.836016i \(-0.684879\pi\)
0.449658 + 0.893201i \(0.351546\pi\)
\(608\) 0.562194 0.324583i 0.0228000 0.0131636i
\(609\) 0.395403 + 0.116415i 0.0160225 + 0.00471736i
\(610\) −6.58570 + 11.4068i −0.266647 + 0.461846i
\(611\) −20.1984 −0.817141
\(612\) −9.42814 + 4.84312i −0.381110 + 0.195771i
\(613\) 2.12088i 0.0856617i 0.999082 + 0.0428308i \(0.0136377\pi\)
−0.999082 + 0.0428308i \(0.986362\pi\)
\(614\) 18.8630 + 10.8906i 0.761249 + 0.439507i
\(615\) −1.12690 4.66002i −0.0454411 0.187910i
\(616\) −2.21445 7.08408i −0.0892226 0.285426i
\(617\) 38.0414 21.9632i 1.53149 0.884206i 0.532197 0.846620i \(-0.321367\pi\)
0.999293 0.0375859i \(-0.0119668\pi\)
\(618\) 10.3859 + 10.9084i 0.417781 + 0.438798i
\(619\) 12.8087 22.1853i 0.514825 0.891703i −0.485027 0.874499i \(-0.661190\pi\)
0.999852 0.0172042i \(-0.00547653\pi\)
\(620\) 8.35297i 0.335463i
\(621\) 3.41276 9.79103i 0.136949 0.392900i
\(622\) 2.03320i 0.0815239i
\(623\) −0.301035 + 0.521408i −0.0120607 + 0.0208898i
\(624\) −3.91248 + 3.72509i −0.156625 + 0.149123i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −12.2823 21.2735i −0.490899 0.850261i
\(627\) 3.72865 0.0620551i 0.148908 0.00247824i
\(628\) −4.61431 + 7.99222i −0.184131 + 0.318924i
\(629\) 10.6104 0.423066
\(630\) 5.64250 + 3.63788i 0.224803 + 0.144937i
\(631\) 20.1742 0.803122 0.401561 0.915832i \(-0.368468\pi\)
0.401561 + 0.915832i \(0.368468\pi\)
\(632\) 2.59056 + 1.49566i 0.103047 + 0.0594942i
\(633\) −26.6314 7.84084i −1.05850 0.311646i
\(634\) −15.0163 + 8.66967i −0.596374 + 0.344316i
\(635\) 1.73832 + 3.01086i 0.0689833 + 0.119483i
\(636\) 6.56736 + 1.93357i 0.260413 + 0.0766709i
\(637\) 5.38061 + 3.10650i 0.213187 + 0.123084i
\(638\) −0.0771836 + 0.344142i −0.00305573 + 0.0136247i
\(639\) 3.48976 + 0.171350i 0.138053 + 0.00677851i
\(640\) 1.00000i 0.0395285i
\(641\) −15.9881 9.23075i −0.631493 0.364593i 0.149837 0.988711i \(-0.452125\pi\)
−0.781330 + 0.624118i \(0.785458\pi\)
\(642\) −12.5914 + 3.04489i −0.496941 + 0.120172i
\(643\) 10.0429 + 17.3949i 0.396054 + 0.685986i 0.993235 0.116120i \(-0.0370459\pi\)
−0.597181 + 0.802107i \(0.703713\pi\)
\(644\) 2.23278 + 3.86730i 0.0879840 + 0.152393i
\(645\) −13.8145 14.5094i −0.543945 0.571308i
\(646\) 1.98629 + 1.14679i 0.0781496 + 0.0451197i
\(647\) 3.97837i 0.156406i −0.996937 0.0782030i \(-0.975082\pi\)
0.996937 0.0782030i \(-0.0249182\pi\)
\(648\) −8.95671 0.881691i −0.351853 0.0346361i
\(649\) −10.4767 2.34970i −0.411248 0.0922339i
\(650\) −2.70110 1.55948i −0.105946 0.0611679i
\(651\) −23.4485 + 22.3254i −0.919019 + 0.875001i
\(652\) 0.846349 + 1.46592i 0.0331456 + 0.0574098i
\(653\) 36.6216 21.1435i 1.43311 0.827409i 0.435757 0.900064i \(-0.356481\pi\)
0.997357 + 0.0726555i \(0.0231474\pi\)
\(654\) 4.64355 + 19.2022i 0.181577 + 0.750866i
\(655\) −3.22874 1.86412i −0.126157 0.0728370i
\(656\) −2.76801 −0.108073
\(657\) 4.20576 + 0.206507i 0.164082 + 0.00805659i
\(658\) 14.4924 0.564971
\(659\) 11.5514 20.0076i 0.449978 0.779384i −0.548406 0.836212i \(-0.684765\pi\)
0.998384 + 0.0568277i \(0.0180986\pi\)
\(660\) −2.78910 + 5.02204i −0.108566 + 0.195483i
\(661\) −8.61084 14.9144i −0.334923 0.580104i 0.648547 0.761175i \(-0.275377\pi\)
−0.983470 + 0.181071i \(0.942044\pi\)
\(662\) 8.70296 + 15.0740i 0.338250 + 0.585867i
\(663\) −18.3095 5.39069i −0.711082 0.209357i
\(664\) −4.91742 + 8.51723i −0.190833 + 0.330532i
\(665\) 1.45274i 0.0563348i
\(666\) 7.57210 + 4.88195i 0.293413 + 0.189172i
\(667\) 0.212199i 0.00821638i
\(668\) −8.19719 + 14.1980i −0.317159 + 0.549335i
\(669\) 14.2721 3.45134i 0.551792 0.133436i
\(670\) −8.51280 + 4.91487i −0.328878 + 0.189878i
\(671\) 13.0336 + 41.6949i 0.503158 + 1.60962i
\(672\) 2.80720 2.67275i 0.108290 0.103104i
\(673\) 10.9871 + 6.34342i 0.423522 + 0.244521i 0.696583 0.717476i \(-0.254703\pi\)
−0.273061 + 0.961997i \(0.588036\pi\)
\(674\) 13.9985i 0.539200i
\(675\) −0.972189 5.10439i −0.0374196 0.196468i
\(676\) 3.27206 0.125849
\(677\) 4.74555 8.21953i 0.182386 0.315902i −0.760306 0.649565i \(-0.774951\pi\)
0.942693 + 0.333662i \(0.108285\pi\)
\(678\) 16.3006 15.5199i 0.626022 0.596038i
\(679\) 9.81234 5.66516i 0.376563 0.217409i
\(680\) −3.05976 + 1.76655i −0.117336 + 0.0677443i
\(681\) −12.2409 + 2.96015i −0.469074 + 0.113433i
\(682\) −20.3792 18.7665i −0.780358 0.718608i
\(683\) 27.3499i 1.04651i 0.852175 + 0.523257i \(0.175283\pi\)
−0.852175 + 0.523257i \(0.824717\pi\)
\(684\) 0.889863 + 1.73231i 0.0340248 + 0.0662364i
\(685\) 2.67480 0.102199
\(686\) −17.4269 10.0614i −0.665361 0.384146i
\(687\) −6.94667 + 23.5944i −0.265032 + 0.900182i
\(688\) −10.0170 + 5.78333i −0.381896 + 0.220487i
\(689\) 6.16400 + 10.6764i 0.234830 + 0.406737i
\(690\) 0.976162 3.31554i 0.0371619 0.126220i
\(691\) 18.0682 31.2950i 0.687346 1.19052i −0.285348 0.958424i \(-0.592109\pi\)
0.972693 0.232093i \(-0.0745575\pi\)
\(692\) −20.4377 −0.776923
\(693\) 21.5525 5.59310i 0.818710 0.212464i
\(694\) −26.1660 −0.993248
\(695\) 3.90194 6.75836i 0.148009 0.256359i
\(696\) −0.179027 + 0.0432929i −0.00678599 + 0.00164101i
\(697\) −4.88985 8.46946i −0.185216 0.320804i
\(698\) 27.7358 16.0132i 1.04981 0.606110i
\(699\) −2.22977 2.34194i −0.0843377 0.0885804i
\(700\) 1.93804 + 1.11893i 0.0732510 + 0.0422915i
\(701\) 8.65997 0.327083 0.163541 0.986536i \(-0.447708\pi\)
0.163541 + 0.986536i \(0.447708\pi\)
\(702\) −10.5862 12.2714i −0.399550 0.463153i
\(703\) 1.94954i 0.0735283i
\(704\) 2.43975 + 2.24669i 0.0919515 + 0.0846753i
\(705\) −7.73452 8.12361i −0.291299 0.305953i
\(706\) 20.2217 11.6750i 0.761053 0.439394i
\(707\) −2.42444 + 1.39975i −0.0911806 + 0.0526431i
\(708\) −1.31797 5.45012i −0.0495323 0.204828i
\(709\) 14.0217 24.2864i 0.526598 0.912094i −0.472922 0.881104i \(-0.656801\pi\)
0.999520 0.0309898i \(-0.00986594\pi\)
\(710\) 1.16465 0.0437087
\(711\) −4.86272 + 7.54228i −0.182366 + 0.282858i
\(712\) 0.269039i 0.0100827i
\(713\) 14.4350 + 8.33405i 0.540595 + 0.312112i
\(714\) 13.1371 + 3.86782i 0.491642 + 0.144749i
\(715\) −9.87329 + 3.08634i −0.369240 + 0.115423i
\(716\) 17.3418 10.0123i 0.648095 0.374178i
\(717\) −12.6037 + 42.8085i −0.470694 + 1.59871i
\(718\) −9.10163 + 15.7645i −0.339670 + 0.588325i
\(719\) 25.5223i 0.951820i −0.879494 0.475910i \(-0.842119\pi\)
0.879494 0.475910i \(-0.157881\pi\)
\(720\) −2.99639 0.147126i −0.111669 0.00548305i
\(721\) 19.4603i 0.724739i
\(722\) −9.28929 + 16.0895i −0.345712 + 0.598790i
\(723\) −12.3679 51.1445i −0.459969 1.90208i
\(724\) 11.1989 + 19.3971i 0.416204 + 0.720887i
\(725\) −0.0531702 0.0920935i −0.00197469 0.00342027i
\(726\) 5.98629 + 18.0877i 0.222172 + 0.671297i
\(727\) −22.7537 + 39.4106i −0.843889 + 1.46166i 0.0426928 + 0.999088i \(0.486406\pi\)
−0.886582 + 0.462571i \(0.846927\pi\)
\(728\) 6.97979 0.258688
\(729\) 3.95965 26.7081i 0.146654 0.989188i
\(730\) 1.40361 0.0519499
\(731\) −35.3912 20.4331i −1.30899 0.755747i
\(732\) −16.5224 + 15.7311i −0.610687 + 0.581437i
\(733\) 1.96896 1.13678i 0.0727253 0.0419880i −0.463196 0.886256i \(-0.653298\pi\)
0.535922 + 0.844268i \(0.319964\pi\)
\(734\) −10.7997 18.7057i −0.398625 0.690439i
\(735\) 0.810978 + 3.35359i 0.0299134 + 0.123699i
\(736\) −1.72813 0.997734i −0.0636996 0.0367770i
\(737\) −7.13458 + 31.8113i −0.262806 + 1.17178i
\(738\) 0.407246 8.29405i 0.0149909 0.305308i
\(739\) 2.04843i 0.0753526i 0.999290 + 0.0376763i \(0.0119956\pi\)
−0.999290 + 0.0376763i \(0.988004\pi\)
\(740\) 2.60080 + 1.50157i 0.0956074 + 0.0551990i
\(741\) −0.990473 + 3.36415i −0.0363859 + 0.123585i
\(742\) −4.42266 7.66028i −0.162361 0.281218i
\(743\) 23.2197 + 40.2176i 0.851847 + 1.47544i 0.879540 + 0.475825i \(0.157851\pi\)
−0.0276930 + 0.999616i \(0.508816\pi\)
\(744\) 4.08619 13.8787i 0.149807 0.508819i
\(745\) −0.0561333 0.0324085i −0.00205656 0.00118736i
\(746\) 5.81248i 0.212810i
\(747\) −24.7975 15.9876i −0.907291 0.584956i
\(748\) −2.56439 + 11.4340i −0.0937633 + 0.418067i
\(749\) 14.4949 + 8.36864i 0.529632 + 0.305783i
\(750\) −0.407116 1.68352i −0.0148658 0.0614736i
\(751\) 3.66422 + 6.34662i 0.133709 + 0.231592i 0.925104 0.379715i \(-0.123978\pi\)
−0.791394 + 0.611306i \(0.790644\pi\)
\(752\) −5.60838 + 3.23800i −0.204517 + 0.118078i
\(753\) 0.813115 0.774170i 0.0296316 0.0282123i
\(754\) −0.287236 0.165836i −0.0104605 0.00603939i
\(755\) 14.7717 0.537596
\(756\) 7.59559 + 8.80471i 0.276249 + 0.320224i
\(757\) 32.5935 1.18463 0.592315 0.805706i \(-0.298214\pi\)
0.592315 + 0.805706i \(0.298214\pi\)
\(758\) 17.8173 30.8605i 0.647153 1.12090i
\(759\) −5.89595 9.83058i −0.214009 0.356827i
\(760\) 0.324583 + 0.562194i 0.0117738 + 0.0203929i
\(761\) −26.8972 46.5873i −0.975023 1.68879i −0.679858 0.733343i \(-0.737959\pi\)
−0.295165 0.955446i \(-0.595375\pi\)
\(762\) 1.41540 + 5.85302i 0.0512745 + 0.212033i
\(763\) 12.7624 22.1052i 0.462032 0.800262i
\(764\) 1.58822i 0.0574598i
\(765\) −4.84312 9.42814i −0.175103 0.340875i
\(766\) 28.1913i 1.01859i
\(767\) 5.04855 8.74435i 0.182293 0.315740i
\(768\) −0.489190 + 1.66153i −0.0176521 + 0.0599554i
\(769\) 46.7234 26.9758i 1.68489 0.972771i 0.726560 0.687103i \(-0.241118\pi\)
0.958329 0.285668i \(-0.0922156\pi\)
\(770\) 7.08408 2.21445i 0.255292 0.0798031i
\(771\) −3.42372 1.00801i −0.123302 0.0363027i
\(772\) 22.3683 + 12.9144i 0.805053 + 0.464798i
\(773\) 19.9741i 0.718417i −0.933257 0.359209i \(-0.883047\pi\)
0.933257 0.359209i \(-0.116953\pi\)
\(774\) −15.8554 30.8658i −0.569909 1.10945i
\(775\) 8.35297 0.300048
\(776\) −2.53151 + 4.38471i −0.0908760 + 0.157402i
\(777\) −2.73607 11.3143i −0.0981560 0.405899i
\(778\) 1.82484 1.05357i 0.0654236 0.0377723i
\(779\) −1.55616 + 0.898450i −0.0557552 + 0.0321903i
\(780\) −3.72509 3.91248i −0.133380 0.140089i
\(781\) 2.61662 2.84146i 0.0936299 0.101676i
\(782\) 7.05021i 0.252115i
\(783\) −0.103383 0.542803i −0.00369461 0.0193982i
\(784\) 1.99201 0.0711430
\(785\) −7.99222 4.61431i −0.285255 0.164692i
\(786\) −4.45276 4.67676i −0.158825 0.166814i
\(787\) −33.9688 + 19.6119i −1.21086 + 0.699088i −0.962946 0.269696i \(-0.913077\pi\)
−0.247910 + 0.968783i \(0.579744\pi\)
\(788\) 10.0166 + 17.3492i 0.356826 + 0.618041i
\(789\) −14.0068 + 3.38717i −0.498654 + 0.120586i
\(790\) −1.49566 + 2.59056i −0.0532133 + 0.0921681i
\(791\) −29.0800 −1.03397
\(792\) −7.09091 + 6.97990i −0.251965 + 0.248020i
\(793\) −41.0811 −1.45883
\(794\) −5.23641 + 9.06972i −0.185833 + 0.321872i
\(795\) −1.93357 + 6.56736i −0.0685765 + 0.232920i
\(796\) −0.816811 1.41476i −0.0289511 0.0501448i
\(797\) 28.2733 16.3236i 1.00149 0.578212i 0.0928024 0.995685i \(-0.470418\pi\)
0.908689 + 0.417473i \(0.137084\pi\)
\(798\) 0.710664 2.41377i 0.0251572 0.0854466i
\(799\) −19.8150 11.4402i −0.701005 0.404726i
\(800\) −1.00000 −0.0353553
\(801\) 0.806145 + 0.0395825i 0.0284837 + 0.00139858i
\(802\) 24.3125i 0.858506i
\(803\) 3.15347 3.42445i 0.111284 0.120846i
\(804\) −16.5486 + 4.00185i −0.583624 + 0.141134i
\(805\) −3.86730 + 2.23278i −0.136304 + 0.0786953i
\(806\) 22.5622 13.0263i 0.794721 0.458832i
\(807\) −8.95622 + 8.52725i −0.315274 + 0.300173i
\(808\) 0.625489 1.08338i 0.0220046 0.0381131i
\(809\) 0.748177 0.0263045 0.0131523 0.999914i \(-0.495813\pi\)
0.0131523 + 0.999914i \(0.495813\pi\)
\(810\) 0.881691 8.95671i 0.0309795 0.314707i
\(811\) 26.0618i 0.915155i −0.889170 0.457577i \(-0.848717\pi\)
0.889170 0.457577i \(-0.151283\pi\)
\(812\) 0.206092 + 0.118987i 0.00723241 + 0.00417563i
\(813\) −32.2047 + 30.6622i −1.12947 + 1.07537i
\(814\) 9.50667 2.97174i 0.333209 0.104159i
\(815\) −1.46592 + 0.846349i −0.0513489 + 0.0296463i
\(816\) −5.94808 + 1.43839i −0.208224 + 0.0503536i
\(817\) −3.75434 + 6.50270i −0.131348 + 0.227501i
\(818\) 30.5869i 1.06945i
\(819\) −1.02691 + 20.9142i −0.0358830 + 0.730800i
\(820\) 2.76801i 0.0966633i
\(821\) 8.01351 13.8798i 0.279673 0.484409i −0.691630 0.722252i \(-0.743107\pi\)
0.971304 + 0.237843i \(0.0764405\pi\)
\(822\) 4.44427 + 1.30848i 0.155012 + 0.0456386i
\(823\) 21.2864 + 36.8691i 0.741997 + 1.28518i 0.951585 + 0.307387i \(0.0994546\pi\)
−0.209587 + 0.977790i \(0.567212\pi\)
\(824\) 4.34798 + 7.53091i 0.151469 + 0.262352i
\(825\) −5.02204 2.78910i −0.174845 0.0971039i
\(826\) −3.62233 + 6.27406i −0.126037 + 0.218303i
\(827\) 26.1822 0.910444 0.455222 0.890378i \(-0.349560\pi\)
0.455222 + 0.890378i \(0.349560\pi\)
\(828\) 3.24385 5.03135i 0.112732 0.174851i
\(829\) 32.5134 1.12924 0.564618 0.825353i \(-0.309024\pi\)
0.564618 + 0.825353i \(0.309024\pi\)
\(830\) −8.51723 4.91742i −0.295637 0.170686i
\(831\) −7.45673 30.8354i −0.258671 1.06967i
\(832\) −2.70110 + 1.55948i −0.0936439 + 0.0540653i
\(833\) 3.51898 + 6.09506i 0.121926 + 0.211181i
\(834\) 9.78933 9.32045i 0.338977 0.322741i
\(835\) −14.1980 8.19719i −0.491340 0.283676i
\(836\) 2.10085 + 0.471175i 0.0726594 + 0.0162959i
\(837\) 40.9849 + 14.2857i 1.41665 + 0.493787i
\(838\) 20.2149i 0.698313i
\(839\) −44.5464 25.7189i −1.53791 0.887915i −0.998961 0.0455791i \(-0.985487\pi\)
−0.538953 0.842336i \(-0.681180\pi\)
\(840\) 2.67275 + 2.80720i 0.0922186 + 0.0968577i
\(841\) 14.4943 + 25.1049i 0.499805 + 0.865688i
\(842\) −4.03827 6.99449i −0.139168 0.241046i
\(843\) 38.1659 9.22941i 1.31450 0.317878i
\(844\) −13.8809 8.01412i −0.477799 0.275857i
\(845\) 3.27206i 0.112562i
\(846\) −8.87718 17.2813i −0.305204 0.594143i
\(847\) 10.5130 22.2586i 0.361232 0.764813i
\(848\) 3.42305 + 1.97630i 0.117548 + 0.0678663i
\(849\) 48.6928 + 14.3362i 1.67113 + 0.492016i
\(850\) −1.76655 3.05976i −0.0605923 0.104949i
\(851\) −5.18982 + 2.99634i −0.177905 + 0.102713i
\(852\) 1.93511 + 0.569736i 0.0662958 + 0.0195188i
\(853\) −24.8106 14.3244i −0.849498 0.490458i 0.0109834 0.999940i \(-0.496504\pi\)
−0.860481 + 0.509482i \(0.829837\pi\)
\(854\) 29.4757 1.00864
\(855\) −1.73231 + 0.889863i −0.0592436 + 0.0304327i
\(856\) −7.47916 −0.255632
\(857\) 13.3156 23.0633i 0.454852 0.787826i −0.543828 0.839197i \(-0.683026\pi\)
0.998680 + 0.0513704i \(0.0163589\pi\)
\(858\) −17.9146 + 0.298148i −0.611594 + 0.0101786i
\(859\) 21.2715 + 36.8433i 0.725773 + 1.25708i 0.958655 + 0.284571i \(0.0918512\pi\)
−0.232882 + 0.972505i \(0.574815\pi\)
\(860\) −5.78333 10.0170i −0.197210 0.341578i
\(861\) −7.77038 + 7.39821i −0.264814 + 0.252130i
\(862\) −8.53462 + 14.7824i −0.290690 + 0.503491i
\(863\) 18.5594i 0.631770i −0.948797 0.315885i \(-0.897699\pi\)
0.948797 0.315885i \(-0.102301\pi\)
\(864\) −4.90663 1.71026i −0.166927 0.0581841i
\(865\) 20.4377i 0.694901i
\(866\) 20.1463 34.8943i 0.684598 1.18576i
\(867\) 5.39499 + 5.66639i 0.183223 + 0.192441i
\(868\) −16.1884 + 9.34637i −0.549470 + 0.317236i
\(869\) 2.96003 + 9.46923i 0.100412 + 0.321222i
\(870\) −0.0432929 0.179027i −0.00146777 0.00606958i
\(871\) −26.5511 15.3293i −0.899650 0.519413i
\(872\) 11.4060i 0.386255i
\(873\) −12.7658 8.23050i −0.432058 0.278560i
\(874\) −1.29539 −0.0438172
\(875\) −1.11893 + 1.93804i −0.0378267 + 0.0655177i
\(876\) 2.33214 + 0.686630i 0.0787958 + 0.0231991i
\(877\) 37.5715 21.6919i 1.26870 0.732484i 0.293957 0.955819i \(-0.405028\pi\)
0.974742 + 0.223335i \(0.0716944\pi\)
\(878\) −18.7045 + 10.7991i −0.631248 + 0.364451i
\(879\) 10.0334 34.0786i 0.338419 1.14944i
\(880\) −2.24669 + 2.43975i −0.0757359 + 0.0822440i
\(881\) 54.3837i 1.83223i 0.400913 + 0.916116i \(0.368693\pi\)
−0.400913 + 0.916116i \(0.631307\pi\)
\(882\) −0.293075 + 5.96882i −0.00986834 + 0.200981i
\(883\) 22.5423 0.758607 0.379304 0.925272i \(-0.376164\pi\)
0.379304 + 0.925272i \(0.376164\pi\)
\(884\) −9.54329 5.50982i −0.320975 0.185315i
\(885\) 5.45012 1.31797i 0.183204 0.0443030i
\(886\) 14.2248 8.21271i 0.477892 0.275911i
\(887\) 8.42281 + 14.5887i 0.282810 + 0.489842i 0.972076 0.234667i \(-0.0754000\pi\)
−0.689266 + 0.724509i \(0.742067\pi\)
\(888\) 3.58677 + 3.76720i 0.120364 + 0.126419i
\(889\) 3.89012 6.73788i 0.130470 0.225981i
\(890\) 0.269039 0.00901820
\(891\) −19.8712 22.2741i −0.665712 0.746209i
\(892\) 8.47752 0.283848
\(893\) −2.10200 + 3.64077i −0.0703407 + 0.121834i
\(894\) −0.0774134 0.0813077i −0.00258909 0.00271934i
\(895\) 10.0123 + 17.3418i 0.334675 + 0.579674i
\(896\) 1.93804 1.11893i 0.0647453 0.0373807i
\(897\) 10.4779 2.53381i 0.349847 0.0846014i
\(898\) −19.2646 11.1224i −0.642870 0.371161i
\(899\) 0.888258 0.0296251
\(900\) 0.147126 2.99639i 0.00490419 0.0998797i
\(901\) 13.9649i 0.465239i
\(902\) −6.75326 6.21887i −0.224859 0.207066i
\(903\) −12.6624 + 43.0080i −0.421379 + 1.43122i
\(904\) 11.2536 6.49729i 0.374290 0.216097i
\(905\) −19.3971 + 11.1989i −0.644781 + 0.372264i
\(906\) 24.5436 + 7.22614i 0.815407 + 0.240073i
\(907\) 6.38593 11.0608i 0.212041 0.367266i −0.740312 0.672264i \(-0.765322\pi\)
0.952353 + 0.304997i \(0.0986555\pi\)
\(908\) −7.27102 −0.241297
\(909\) 3.15420 + 2.03360i 0.104618 + 0.0674503i
\(910\) 6.97979i 0.231378i
\(911\) −3.35433 1.93662i −0.111134 0.0641632i 0.443403 0.896323i \(-0.353771\pi\)
−0.554537 + 0.832159i \(0.687104\pi\)
\(912\) 0.264286 + 1.09289i 0.00875137 + 0.0361891i
\(913\) −31.1329 + 9.73197i −1.03035 + 0.322081i
\(914\) −9.07476 + 5.23932i −0.300166 + 0.173301i
\(915\) −15.7311 16.5224i −0.520053 0.546215i
\(916\) −7.10018 + 12.2979i −0.234597 + 0.406333i
\(917\) 8.34324i 0.275518i
\(918\) −3.43485 18.0344i −0.113367 0.595223i
\(919\) 21.9222i 0.723147i −0.932344 0.361573i \(-0.882240\pi\)
0.932344 0.361573i \(-0.117760\pi\)
\(920\) 0.997734 1.72813i 0.0328943 0.0569746i
\(921\) −27.3226 + 26.0140i −0.900311 + 0.857190i
\(922\) 13.9519 + 24.1654i 0.459481 + 0.795845i
\(923\) 1.81626 + 3.14585i 0.0597828 + 0.103547i
\(924\) 12.8537 0.213921i 0.422856 0.00703749i
\(925\) −1.50157 + 2.60080i −0.0493715 + 0.0855139i
\(926\) −41.5704 −1.36609
\(927\) −23.2053 + 11.9202i −0.762161 + 0.391512i
\(928\) −0.106340 −0.00349080
\(929\) −16.3628 9.44708i −0.536847 0.309949i 0.206953 0.978351i \(-0.433645\pi\)
−0.743800 + 0.668402i \(0.766979\pi\)
\(930\) 13.8787 + 4.08619i 0.455102 + 0.133991i
\(931\) 1.11989 0.646570i 0.0367030 0.0211905i
\(932\) −0.933478 1.61683i −0.0305771 0.0529611i
\(933\) 3.37823 + 0.994621i 0.110598 + 0.0325624i
\(934\) 30.1488 + 17.4064i 0.986499 + 0.569556i
\(935\) −11.4340 2.56439i −0.373930 0.0838644i
\(936\) −4.27542 8.32300i −0.139746 0.272046i
\(937\) 19.5862i 0.639854i 0.947442 + 0.319927i \(0.103658\pi\)
−0.947442 + 0.319927i \(0.896342\pi\)
\(938\) 19.0504 + 10.9988i 0.622018 + 0.359122i
\(939\) 41.3550 10.0006i 1.34957 0.326358i
\(940\) −3.23800 5.60838i −0.105612 0.182925i
\(941\) −26.7009 46.2473i −0.870424 1.50762i −0.861559 0.507658i \(-0.830512\pi\)
−0.00886483 0.999961i \(-0.502822\pi\)
\(942\) −11.0221 11.5765i −0.359119 0.377184i
\(943\) 4.78348 + 2.76174i 0.155772 + 0.0899347i
\(944\) 3.23733i 0.105366i
\(945\) −8.80471 + 7.59559i −0.286417 + 0.247085i
\(946\) −37.4324 8.39527i −1.21703 0.272954i
\(947\) −25.8265 14.9109i −0.839248 0.484540i 0.0177602 0.999842i \(-0.494346\pi\)
−0.857009 + 0.515302i \(0.827680\pi\)
\(948\) −3.75237 + 3.57264i −0.121871 + 0.116034i
\(949\) 2.18890 + 3.79129i 0.0710548 + 0.123070i
\(950\) −0.562194 + 0.324583i −0.0182400 + 0.0105309i
\(951\) −7.05912 29.1912i −0.228908 0.946590i
\(952\) 6.84730 + 3.95329i 0.221922 + 0.128127i
\(953\) 1.51910 0.0492084 0.0246042 0.999697i \(-0.492167\pi\)
0.0246042 + 0.999697i \(0.492167\pi\)
\(954\) −6.42537 + 9.96602i −0.208029 + 0.322662i
\(955\) 1.58822 0.0513936
\(956\) −12.8822 + 22.3127i −0.416641 + 0.721644i
\(957\) −0.534046 0.296594i −0.0172633 0.00958752i
\(958\) −18.0153 31.2034i −0.582047 1.00814i
\(959\) −2.99291 5.18387i −0.0966460 0.167396i
\(960\) −1.66153 0.489190i −0.0536258 0.0157885i
\(961\) −19.3861 + 33.5777i −0.625357 + 1.08315i
\(962\) 9.36671i 0.301995i
\(963\) 1.10038 22.4105i 0.0354591 0.722168i
\(964\) 30.3794i 0.978454i
\(965\) −12.9144 + 22.3683i −0.415728 + 0.720062i
\(966\) −7.51790 + 1.81801i −0.241884 + 0.0584934i
\(967\) −13.6284 + 7.86838i −0.438261 + 0.253030i −0.702860 0.711329i \(-0.748094\pi\)
0.264599 + 0.964359i \(0.414760\pi\)
\(968\) 0.904760 + 10.9627i 0.0290801 + 0.352355i
\(969\) −2.87709 + 2.73929i −0.0924256 + 0.0879988i
\(970\) −4.38471 2.53151i −0.140784 0.0812819i
\(971\) 18.6803i 0.599480i 0.954021 + 0.299740i \(0.0969000\pi\)
−0.954021 + 0.299740i \(0.903100\pi\)
\(972\) 5.84649 14.4506i 0.187526 0.463502i
\(973\) −17.4640 −0.559869
\(974\) −11.6151 + 20.1179i −0.372172 + 0.644621i
\(975\) 3.91248 3.72509i 0.125300 0.119298i
\(976\) −11.4068 + 6.58570i −0.365122 + 0.210803i
\(977\) 41.0917 23.7243i 1.31464 0.759007i 0.331779 0.943357i \(-0.392351\pi\)
0.982861 + 0.184350i \(0.0590179\pi\)
\(978\) −2.84970 + 0.689125i −0.0911233 + 0.0220358i
\(979\) 0.604447 0.656388i 0.0193182 0.0209782i
\(980\) 1.99201i 0.0636323i
\(981\) −34.1767 1.67811i −1.09118 0.0535779i
\(982\) 28.0312 0.894511
\(983\) 15.3785 + 8.87879i 0.490498 + 0.283189i 0.724781 0.688979i \(-0.241941\pi\)
−0.234283 + 0.972168i \(0.575274\pi\)
\(984\) 1.35408 4.59915i 0.0431666 0.146616i
\(985\) −17.3492 + 10.0166i −0.552793 + 0.319155i
\(986\) −0.187856 0.325376i −0.00598256 0.0103621i
\(987\) −7.08951 + 24.0795i −0.225662 + 0.766460i
\(988\) −1.01236 + 1.75346i −0.0322075 + 0.0557850i
\(989\) 23.0809 0.733930
\(990\) −6.97990 7.09091i −0.221836 0.225364i
\(991\) 19.1821 0.609338 0.304669 0.952458i \(-0.401454\pi\)
0.304669 + 0.952458i \(0.401454\pi\)
\(992\) 4.17649 7.23389i 0.132604 0.229676i
\(993\) −29.3033 + 7.08624i −0.929913 + 0.224875i
\(994\) −1.30316 2.25714i −0.0413338 0.0715923i
\(995\) 1.41476 0.816811i 0.0448508 0.0258946i
\(996\) −11.7461 12.3370i −0.372190 0.390913i
\(997\) 4.14157 + 2.39114i 0.131165 + 0.0757280i 0.564147 0.825675i \(-0.309205\pi\)
−0.432982 + 0.901403i \(0.642539\pi\)
\(998\) −19.4637 −0.616114
\(999\) −11.8157 + 10.1931i −0.373833 + 0.322496i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.t.a.461.8 yes 48
3.2 odd 2 2970.2.t.b.791.9 48
9.4 even 3 2970.2.t.a.2771.9 48
9.5 odd 6 990.2.t.b.131.8 yes 48
11.10 odd 2 990.2.t.b.461.8 yes 48
33.32 even 2 2970.2.t.a.791.9 48
99.32 even 6 inner 990.2.t.a.131.8 48
99.76 odd 6 2970.2.t.b.2771.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.t.a.131.8 48 99.32 even 6 inner
990.2.t.a.461.8 yes 48 1.1 even 1 trivial
990.2.t.b.131.8 yes 48 9.5 odd 6
990.2.t.b.461.8 yes 48 11.10 odd 2
2970.2.t.a.791.9 48 33.32 even 2
2970.2.t.a.2771.9 48 9.4 even 3
2970.2.t.b.791.9 48 3.2 odd 2
2970.2.t.b.2771.9 48 99.76 odd 6