Properties

Label 2970.2.t.a.2771.9
Level $2970$
Weight $2$
Character 2970.2771
Analytic conductor $23.716$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2970,2,Mod(791,2970)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2970, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2970.791"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2970 = 2 \cdot 3^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2970.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.7155694003\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 990)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2771.9
Character \(\chi\) \(=\) 2970.2771
Dual form 2970.2.t.a.791.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-0.866025 - 0.500000i) q^{5} +(1.93804 - 1.11893i) q^{7} +1.00000 q^{8} +1.00000i q^{10} +(-3.16557 + 0.989540i) q^{11} +(2.70110 + 1.55948i) q^{13} +(-1.93804 - 1.11893i) q^{14} +(-0.500000 - 0.866025i) q^{16} -3.53311 q^{17} +0.649165i q^{19} +(0.866025 - 0.500000i) q^{20} +(2.43975 + 2.24669i) q^{22} +(-1.72813 - 0.997734i) q^{23} +(0.500000 + 0.866025i) q^{25} -3.11896i q^{26} +2.23785i q^{28} +(0.0531702 + 0.0920935i) q^{29} +(4.17649 - 7.23389i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(1.76655 + 3.05976i) q^{34} -2.23785 q^{35} -3.00315 q^{37} +(0.562194 - 0.324583i) q^{38} +(-0.866025 - 0.500000i) q^{40} +(1.38401 - 2.39717i) q^{41} +(-10.0170 + 5.78333i) q^{43} +(0.725816 - 3.23623i) q^{44} +1.99547i q^{46} +(-5.60838 + 3.23800i) q^{47} +(-0.996003 + 1.72513i) q^{49} +(0.500000 - 0.866025i) q^{50} +(-2.70110 + 1.55948i) q^{52} -3.95259i q^{53} +(3.23623 + 0.725816i) q^{55} +(1.93804 - 1.11893i) q^{56} +(0.0531702 - 0.0920935i) q^{58} +(2.80361 + 1.61866i) q^{59} +(-11.4068 + 6.58570i) q^{61} -8.35297 q^{62} +1.00000 q^{64} +(-1.55948 - 2.70110i) q^{65} +(4.91487 - 8.51280i) q^{67} +(1.76655 - 3.05976i) q^{68} +(1.11893 + 1.93804i) q^{70} -1.16465i q^{71} -1.40361i q^{73} +(1.50157 + 2.60080i) q^{74} +(-0.562194 - 0.324583i) q^{76} +(-5.02777 + 5.45981i) q^{77} +(-2.59056 + 1.49566i) q^{79} +1.00000i q^{80} -2.76801 q^{82} +(-4.91742 - 8.51723i) q^{83} +(3.05976 + 1.76655i) q^{85} +(10.0170 + 5.78333i) q^{86} +(-3.16557 + 0.989540i) q^{88} -0.269039i q^{89} +6.97979 q^{91} +(1.72813 - 0.997734i) q^{92} +(5.60838 + 3.23800i) q^{94} +(0.324583 - 0.562194i) q^{95} +(-2.53151 - 4.38471i) q^{97} +1.99201 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 24 q^{2} - 24 q^{4} + 48 q^{8} + 12 q^{11} - 24 q^{13} - 24 q^{16} - 12 q^{17} - 6 q^{22} - 36 q^{23} + 24 q^{25} - 24 q^{32} + 6 q^{34} + 6 q^{38} - 6 q^{41} - 30 q^{43} - 6 q^{44} + 24 q^{49} + 24 q^{50}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2970\mathbb{Z}\right)^\times\).

\(n\) \(541\) \(1541\) \(2377\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.866025 0.500000i −0.387298 0.223607i
\(6\) 0 0
\(7\) 1.93804 1.11893i 0.732510 0.422915i −0.0868297 0.996223i \(-0.527674\pi\)
0.819340 + 0.573308i \(0.194340\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) −3.16557 + 0.989540i −0.954454 + 0.298358i
\(12\) 0 0
\(13\) 2.70110 + 1.55948i 0.749151 + 0.432522i 0.825387 0.564567i \(-0.190957\pi\)
−0.0762361 + 0.997090i \(0.524290\pi\)
\(14\) −1.93804 1.11893i −0.517963 0.299046i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.53311 −0.856905 −0.428452 0.903564i \(-0.640941\pi\)
−0.428452 + 0.903564i \(0.640941\pi\)
\(18\) 0 0
\(19\) 0.649165i 0.148929i 0.997224 + 0.0744644i \(0.0237247\pi\)
−0.997224 + 0.0744644i \(0.976275\pi\)
\(20\) 0.866025 0.500000i 0.193649 0.111803i
\(21\) 0 0
\(22\) 2.43975 + 2.24669i 0.520156 + 0.478996i
\(23\) −1.72813 0.997734i −0.360339 0.208042i 0.308890 0.951098i \(-0.400042\pi\)
−0.669230 + 0.743056i \(0.733376\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 3.11896i 0.611679i
\(27\) 0 0
\(28\) 2.23785i 0.422915i
\(29\) 0.0531702 + 0.0920935i 0.00987346 + 0.0171013i 0.870920 0.491425i \(-0.163524\pi\)
−0.861046 + 0.508526i \(0.830190\pi\)
\(30\) 0 0
\(31\) 4.17649 7.23389i 0.750119 1.29924i −0.197646 0.980274i \(-0.563330\pi\)
0.947765 0.318971i \(-0.103337\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 1.76655 + 3.05976i 0.302962 + 0.524745i
\(35\) −2.23785 −0.378267
\(36\) 0 0
\(37\) −3.00315 −0.493715 −0.246857 0.969052i \(-0.579398\pi\)
−0.246857 + 0.969052i \(0.579398\pi\)
\(38\) 0.562194 0.324583i 0.0911998 0.0526543i
\(39\) 0 0
\(40\) −0.866025 0.500000i −0.136931 0.0790569i
\(41\) 1.38401 2.39717i 0.216146 0.374375i −0.737481 0.675368i \(-0.763985\pi\)
0.953626 + 0.300993i \(0.0973181\pi\)
\(42\) 0 0
\(43\) −10.0170 + 5.78333i −1.52758 + 0.881950i −0.528119 + 0.849170i \(0.677103\pi\)
−0.999463 + 0.0327798i \(0.989564\pi\)
\(44\) 0.725816 3.23623i 0.109421 0.487880i
\(45\) 0 0
\(46\) 1.99547i 0.294216i
\(47\) −5.60838 + 3.23800i −0.818067 + 0.472311i −0.849749 0.527187i \(-0.823247\pi\)
0.0316824 + 0.999498i \(0.489913\pi\)
\(48\) 0 0
\(49\) −0.996003 + 1.72513i −0.142286 + 0.246447i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 0 0
\(52\) −2.70110 + 1.55948i −0.374575 + 0.216261i
\(53\) 3.95259i 0.542930i −0.962448 0.271465i \(-0.912492\pi\)
0.962448 0.271465i \(-0.0875082\pi\)
\(54\) 0 0
\(55\) 3.23623 + 0.725816i 0.436373 + 0.0978691i
\(56\) 1.93804 1.11893i 0.258981 0.149523i
\(57\) 0 0
\(58\) 0.0531702 0.0920935i 0.00698159 0.0120925i
\(59\) 2.80361 + 1.61866i 0.364998 + 0.210732i 0.671271 0.741212i \(-0.265749\pi\)
−0.306273 + 0.951944i \(0.599082\pi\)
\(60\) 0 0
\(61\) −11.4068 + 6.58570i −1.46049 + 0.843212i −0.999034 0.0439524i \(-0.986005\pi\)
−0.461453 + 0.887165i \(0.652672\pi\)
\(62\) −8.35297 −1.06083
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.55948 2.70110i −0.193430 0.335030i
\(66\) 0 0
\(67\) 4.91487 8.51280i 0.600447 1.04000i −0.392307 0.919834i \(-0.628323\pi\)
0.992753 0.120170i \(-0.0383439\pi\)
\(68\) 1.76655 3.05976i 0.214226 0.371051i
\(69\) 0 0
\(70\) 1.11893 + 1.93804i 0.133737 + 0.231640i
\(71\) 1.16465i 0.138219i −0.997609 0.0691095i \(-0.977984\pi\)
0.997609 0.0691095i \(-0.0220158\pi\)
\(72\) 0 0
\(73\) 1.40361i 0.164280i −0.996621 0.0821400i \(-0.973825\pi\)
0.996621 0.0821400i \(-0.0261755\pi\)
\(74\) 1.50157 + 2.60080i 0.174554 + 0.302337i
\(75\) 0 0
\(76\) −0.562194 0.324583i −0.0644880 0.0372322i
\(77\) −5.02777 + 5.45981i −0.572967 + 0.622203i
\(78\) 0 0
\(79\) −2.59056 + 1.49566i −0.291461 + 0.168275i −0.638601 0.769538i \(-0.720486\pi\)
0.347140 + 0.937813i \(0.387153\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 0 0
\(82\) −2.76801 −0.305676
\(83\) −4.91742 8.51723i −0.539757 0.934887i −0.998917 0.0465331i \(-0.985183\pi\)
0.459159 0.888354i \(-0.348151\pi\)
\(84\) 0 0
\(85\) 3.05976 + 1.76655i 0.331878 + 0.191610i
\(86\) 10.0170 + 5.78333i 1.08016 + 0.623633i
\(87\) 0 0
\(88\) −3.16557 + 0.989540i −0.337451 + 0.105485i
\(89\) 0.269039i 0.0285181i −0.999898 0.0142590i \(-0.995461\pi\)
0.999898 0.0142590i \(-0.00453894\pi\)
\(90\) 0 0
\(91\) 6.97979 0.731681
\(92\) 1.72813 0.997734i 0.180170 0.104021i
\(93\) 0 0
\(94\) 5.60838 + 3.23800i 0.578461 + 0.333974i
\(95\) 0.324583 0.562194i 0.0333015 0.0576798i
\(96\) 0 0
\(97\) −2.53151 4.38471i −0.257036 0.445200i 0.708410 0.705801i \(-0.249413\pi\)
−0.965447 + 0.260601i \(0.916079\pi\)
\(98\) 1.99201 0.201223
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 0.625489 + 1.08338i 0.0622385 + 0.107800i 0.895466 0.445131i \(-0.146843\pi\)
−0.833227 + 0.552931i \(0.813509\pi\)
\(102\) 0 0
\(103\) 4.34798 7.53091i 0.428419 0.742043i −0.568314 0.822812i \(-0.692404\pi\)
0.996733 + 0.0807686i \(0.0257375\pi\)
\(104\) 2.70110 + 1.55948i 0.264865 + 0.152920i
\(105\) 0 0
\(106\) −3.42305 + 1.97630i −0.332476 + 0.191955i
\(107\) −7.47916 −0.723038 −0.361519 0.932365i \(-0.617742\pi\)
−0.361519 + 0.932365i \(0.617742\pi\)
\(108\) 0 0
\(109\) 11.4060i 1.09249i 0.837624 + 0.546247i \(0.183944\pi\)
−0.837624 + 0.546247i \(0.816056\pi\)
\(110\) −0.989540 3.16557i −0.0943489 0.301825i
\(111\) 0 0
\(112\) −1.93804 1.11893i −0.183127 0.105729i
\(113\) −11.2536 6.49729i −1.05865 0.611214i −0.133594 0.991036i \(-0.542652\pi\)
−0.925059 + 0.379822i \(0.875985\pi\)
\(114\) 0 0
\(115\) 0.997734 + 1.72813i 0.0930392 + 0.161149i
\(116\) −0.106340 −0.00987346
\(117\) 0 0
\(118\) 3.23733i 0.298020i
\(119\) −6.84730 + 3.95329i −0.627691 + 0.362398i
\(120\) 0 0
\(121\) 9.04162 6.26491i 0.821966 0.569537i
\(122\) 11.4068 + 6.58570i 1.03272 + 0.596241i
\(123\) 0 0
\(124\) 4.17649 + 7.23389i 0.375059 + 0.649622i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 3.47665i 0.308503i 0.988032 + 0.154251i \(0.0492965\pi\)
−0.988032 + 0.154251i \(0.950703\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1.55948 + 2.70110i −0.136776 + 0.236902i
\(131\) −1.86412 + 3.22874i −0.162869 + 0.282097i −0.935896 0.352276i \(-0.885408\pi\)
0.773028 + 0.634372i \(0.218741\pi\)
\(132\) 0 0
\(133\) 0.726369 + 1.25811i 0.0629842 + 0.109092i
\(134\) −9.82974 −0.849160
\(135\) 0 0
\(136\) −3.53311 −0.302962
\(137\) −2.31644 + 1.33740i −0.197907 + 0.114262i −0.595679 0.803223i \(-0.703117\pi\)
0.397772 + 0.917484i \(0.369784\pi\)
\(138\) 0 0
\(139\) −6.75836 3.90194i −0.573237 0.330958i 0.185204 0.982700i \(-0.440705\pi\)
−0.758441 + 0.651742i \(0.774039\pi\)
\(140\) 1.11893 1.93804i 0.0945666 0.163794i
\(141\) 0 0
\(142\) −1.00862 + 0.582327i −0.0846415 + 0.0488678i
\(143\) −10.0937 2.26380i −0.844077 0.189308i
\(144\) 0 0
\(145\) 0.106340i 0.00883109i
\(146\) −1.21556 + 0.701804i −0.100601 + 0.0580817i
\(147\) 0 0
\(148\) 1.50157 2.60080i 0.123429 0.213785i
\(149\) −0.0324085 + 0.0561333i −0.00265501 + 0.00459862i −0.867350 0.497699i \(-0.834178\pi\)
0.864695 + 0.502298i \(0.167512\pi\)
\(150\) 0 0
\(151\) −12.7926 + 7.38583i −1.04105 + 0.601050i −0.920130 0.391612i \(-0.871918\pi\)
−0.120919 + 0.992662i \(0.538584\pi\)
\(152\) 0.649165i 0.0526543i
\(153\) 0 0
\(154\) 7.24222 + 1.62427i 0.583594 + 0.130888i
\(155\) −7.23389 + 4.17649i −0.581040 + 0.335463i
\(156\) 0 0
\(157\) −4.61431 + 7.99222i −0.368262 + 0.637849i −0.989294 0.145937i \(-0.953380\pi\)
0.621032 + 0.783785i \(0.286714\pi\)
\(158\) 2.59056 + 1.49566i 0.206094 + 0.118988i
\(159\) 0 0
\(160\) 0.866025 0.500000i 0.0684653 0.0395285i
\(161\) −4.46557 −0.351936
\(162\) 0 0
\(163\) −1.69270 −0.132582 −0.0662912 0.997800i \(-0.521117\pi\)
−0.0662912 + 0.997800i \(0.521117\pi\)
\(164\) 1.38401 + 2.39717i 0.108073 + 0.187188i
\(165\) 0 0
\(166\) −4.91742 + 8.51723i −0.381666 + 0.661065i
\(167\) −8.19719 + 14.1980i −0.634318 + 1.09867i 0.352341 + 0.935872i \(0.385386\pi\)
−0.986659 + 0.162799i \(0.947948\pi\)
\(168\) 0 0
\(169\) −1.63603 2.83369i −0.125849 0.217976i
\(170\) 3.53311i 0.270977i
\(171\) 0 0
\(172\) 11.5667i 0.881950i
\(173\) 10.2188 + 17.6995i 0.776923 + 1.34567i 0.933707 + 0.358037i \(0.116554\pi\)
−0.156784 + 0.987633i \(0.550113\pi\)
\(174\) 0 0
\(175\) 1.93804 + 1.11893i 0.146502 + 0.0845830i
\(176\) 2.43975 + 2.24669i 0.183903 + 0.169351i
\(177\) 0 0
\(178\) −0.232994 + 0.134519i −0.0174637 + 0.0100827i
\(179\) 20.0246i 1.49671i 0.663297 + 0.748356i \(0.269156\pi\)
−0.663297 + 0.748356i \(0.730844\pi\)
\(180\) 0 0
\(181\) −22.3978 −1.66482 −0.832408 0.554163i \(-0.813038\pi\)
−0.832408 + 0.554163i \(0.813038\pi\)
\(182\) −3.48989 6.04467i −0.258688 0.448061i
\(183\) 0 0
\(184\) −1.72813 0.997734i −0.127399 0.0735539i
\(185\) 2.60080 + 1.50157i 0.191215 + 0.110398i
\(186\) 0 0
\(187\) 11.1843 3.49615i 0.817876 0.255664i
\(188\) 6.47601i 0.472311i
\(189\) 0 0
\(190\) −0.649165 −0.0470954
\(191\) −1.37544 + 0.794110i −0.0995233 + 0.0574598i −0.548936 0.835865i \(-0.684967\pi\)
0.449412 + 0.893324i \(0.351633\pi\)
\(192\) 0 0
\(193\) 22.3683 + 12.9144i 1.61011 + 0.929596i 0.989344 + 0.145597i \(0.0465104\pi\)
0.620763 + 0.783998i \(0.286823\pi\)
\(194\) −2.53151 + 4.38471i −0.181752 + 0.314804i
\(195\) 0 0
\(196\) −0.996003 1.72513i −0.0711430 0.123223i
\(197\) −20.0332 −1.42730 −0.713652 0.700500i \(-0.752960\pi\)
−0.713652 + 0.700500i \(0.752960\pi\)
\(198\) 0 0
\(199\) 1.63362 0.115804 0.0579022 0.998322i \(-0.481559\pi\)
0.0579022 + 0.998322i \(0.481559\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) 0.625489 1.08338i 0.0440092 0.0762262i
\(203\) 0.206092 + 0.118987i 0.0144648 + 0.00835127i
\(204\) 0 0
\(205\) −2.39717 + 1.38401i −0.167426 + 0.0966633i
\(206\) −8.69595 −0.605876
\(207\) 0 0
\(208\) 3.11896i 0.216261i
\(209\) −0.642375 2.05498i −0.0444340 0.142146i
\(210\) 0 0
\(211\) −13.8809 8.01412i −0.955598 0.551715i −0.0607823 0.998151i \(-0.519360\pi\)
−0.894815 + 0.446437i \(0.852693\pi\)
\(212\) 3.42305 + 1.97630i 0.235096 + 0.135733i
\(213\) 0 0
\(214\) 3.73958 + 6.47714i 0.255632 + 0.442768i
\(215\) 11.5667 0.788840
\(216\) 0 0
\(217\) 18.6927i 1.26895i
\(218\) 9.87786 5.70298i 0.669013 0.386255i
\(219\) 0 0
\(220\) −2.24669 + 2.43975i −0.151472 + 0.164488i
\(221\) −9.54329 5.50982i −0.641951 0.370630i
\(222\) 0 0
\(223\) −4.23876 7.34175i −0.283848 0.491640i 0.688481 0.725255i \(-0.258278\pi\)
−0.972329 + 0.233615i \(0.924945\pi\)
\(224\) 2.23785i 0.149523i
\(225\) 0 0
\(226\) 12.9946i 0.864387i
\(227\) 3.63551 + 6.29688i 0.241297 + 0.417939i 0.961084 0.276256i \(-0.0890938\pi\)
−0.719787 + 0.694195i \(0.755761\pi\)
\(228\) 0 0
\(229\) −7.10018 + 12.2979i −0.469193 + 0.812667i −0.999380 0.0352143i \(-0.988789\pi\)
0.530186 + 0.847881i \(0.322122\pi\)
\(230\) 0.997734 1.72813i 0.0657886 0.113949i
\(231\) 0 0
\(232\) 0.0531702 + 0.0920935i 0.00349080 + 0.00604623i
\(233\) 1.86696 0.122308 0.0611542 0.998128i \(-0.480522\pi\)
0.0611542 + 0.998128i \(0.480522\pi\)
\(234\) 0 0
\(235\) 6.47601 0.422448
\(236\) −2.80361 + 1.61866i −0.182499 + 0.105366i
\(237\) 0 0
\(238\) 6.84730 + 3.95329i 0.443845 + 0.256254i
\(239\) −12.8822 + 22.3127i −0.833282 + 1.44329i 0.0621388 + 0.998068i \(0.480208\pi\)
−0.895421 + 0.445220i \(0.853125\pi\)
\(240\) 0 0
\(241\) −26.3093 + 15.1897i −1.69473 + 0.978454i −0.744134 + 0.668031i \(0.767137\pi\)
−0.950598 + 0.310423i \(0.899529\pi\)
\(242\) −9.94638 4.69782i −0.639378 0.301987i
\(243\) 0 0
\(244\) 13.1714i 0.843212i
\(245\) 1.72513 0.996003i 0.110214 0.0636323i
\(246\) 0 0
\(247\) −1.01236 + 1.75346i −0.0644150 + 0.111570i
\(248\) 4.17649 7.23389i 0.265207 0.459352i
\(249\) 0 0
\(250\) −0.866025 + 0.500000i −0.0547723 + 0.0316228i
\(251\) 0.648202i 0.0409141i 0.999791 + 0.0204571i \(0.00651214\pi\)
−0.999791 + 0.0204571i \(0.993488\pi\)
\(252\) 0 0
\(253\) 6.45780 + 1.44834i 0.405998 + 0.0910566i
\(254\) 3.01086 1.73832i 0.188918 0.109072i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.78451 1.03029i −0.111315 0.0642677i 0.443309 0.896369i \(-0.353804\pi\)
−0.554624 + 0.832101i \(0.687138\pi\)
\(258\) 0 0
\(259\) −5.82022 + 3.36031i −0.361651 + 0.208799i
\(260\) 3.11896 0.193430
\(261\) 0 0
\(262\) 3.72823 0.230331
\(263\) 4.15995 + 7.20525i 0.256514 + 0.444295i 0.965306 0.261123i \(-0.0840928\pi\)
−0.708792 + 0.705418i \(0.750759\pi\)
\(264\) 0 0
\(265\) −1.97630 + 3.42305i −0.121403 + 0.210276i
\(266\) 0.726369 1.25811i 0.0445365 0.0771395i
\(267\) 0 0
\(268\) 4.91487 + 8.51280i 0.300223 + 0.520002i
\(269\) 7.13974i 0.435318i −0.976025 0.217659i \(-0.930158\pi\)
0.976025 0.217659i \(-0.0698420\pi\)
\(270\) 0 0
\(271\) 25.6730i 1.55952i −0.626076 0.779762i \(-0.715340\pi\)
0.626076 0.779762i \(-0.284660\pi\)
\(272\) 1.76655 + 3.05976i 0.107113 + 0.185525i
\(273\) 0 0
\(274\) 2.31644 + 1.33740i 0.139942 + 0.0807953i
\(275\) −2.43975 2.24669i −0.147122 0.135481i
\(276\) 0 0
\(277\) −15.8621 + 9.15799i −0.953061 + 0.550250i −0.894031 0.448006i \(-0.852134\pi\)
−0.0590307 + 0.998256i \(0.518801\pi\)
\(278\) 7.80388i 0.468046i
\(279\) 0 0
\(280\) −2.23785 −0.133737
\(281\) −11.3351 19.6330i −0.676196 1.17121i −0.976118 0.217242i \(-0.930294\pi\)
0.299922 0.953964i \(-0.403039\pi\)
\(282\) 0 0
\(283\) 25.3797 + 14.6530i 1.50867 + 0.871029i 0.999949 + 0.0100962i \(0.00321379\pi\)
0.508718 + 0.860933i \(0.330120\pi\)
\(284\) 1.00862 + 0.582327i 0.0598506 + 0.0345547i
\(285\) 0 0
\(286\) 3.08634 + 9.87329i 0.182499 + 0.583820i
\(287\) 6.19442i 0.365645i
\(288\) 0 0
\(289\) −4.51715 −0.265715
\(290\) −0.0920935 + 0.0531702i −0.00540792 + 0.00312226i
\(291\) 0 0
\(292\) 1.21556 + 0.701804i 0.0711353 + 0.0410700i
\(293\) 10.2552 17.7625i 0.599113 1.03769i −0.393839 0.919179i \(-0.628853\pi\)
0.992952 0.118515i \(-0.0378133\pi\)
\(294\) 0 0
\(295\) −1.61866 2.80361i −0.0942422 0.163232i
\(296\) −3.00315 −0.174554
\(297\) 0 0
\(298\) 0.0648171 0.00375475
\(299\) −3.11190 5.38996i −0.179966 0.311710i
\(300\) 0 0
\(301\) −12.9423 + 22.4166i −0.745979 + 1.29207i
\(302\) 12.7926 + 7.38583i 0.736133 + 0.425007i
\(303\) 0 0
\(304\) 0.562194 0.324583i 0.0322440 0.0186161i
\(305\) 13.1714 0.754192
\(306\) 0 0
\(307\) 21.7811i 1.24311i −0.783369 0.621557i \(-0.786500\pi\)
0.783369 0.621557i \(-0.213500\pi\)
\(308\) −2.21445 7.08408i −0.126180 0.403653i
\(309\) 0 0
\(310\) 7.23389 + 4.17649i 0.410857 + 0.237208i
\(311\) 1.76080 + 1.01660i 0.0998460 + 0.0576461i 0.549092 0.835762i \(-0.314974\pi\)
−0.449246 + 0.893408i \(0.648307\pi\)
\(312\) 0 0
\(313\) −12.2823 21.2735i −0.694235 1.20245i −0.970438 0.241352i \(-0.922409\pi\)
0.276202 0.961100i \(-0.410924\pi\)
\(314\) 9.22862 0.520801
\(315\) 0 0
\(316\) 2.99132i 0.168275i
\(317\) −15.0163 + 8.66967i −0.843400 + 0.486937i −0.858418 0.512950i \(-0.828553\pi\)
0.0150187 + 0.999887i \(0.495219\pi\)
\(318\) 0 0
\(319\) −0.259444 0.238914i −0.0145261 0.0133766i
\(320\) −0.866025 0.500000i −0.0484123 0.0279508i
\(321\) 0 0
\(322\) 2.23278 + 3.86730i 0.124428 + 0.215516i
\(323\) 2.29357i 0.127618i
\(324\) 0 0
\(325\) 3.11896i 0.173009i
\(326\) 0.846349 + 1.46592i 0.0468749 + 0.0811898i
\(327\) 0 0
\(328\) 1.38401 2.39717i 0.0764190 0.132362i
\(329\) −7.24618 + 12.5508i −0.399495 + 0.691945i
\(330\) 0 0
\(331\) 8.70296 + 15.0740i 0.478358 + 0.828541i 0.999692 0.0248121i \(-0.00789874\pi\)
−0.521334 + 0.853353i \(0.674565\pi\)
\(332\) 9.83485 0.539757
\(333\) 0 0
\(334\) 16.3944 0.897061
\(335\) −8.51280 + 4.91487i −0.465104 + 0.268528i
\(336\) 0 0
\(337\) −12.1230 6.99923i −0.660383 0.381272i 0.132040 0.991244i \(-0.457847\pi\)
−0.792423 + 0.609972i \(0.791181\pi\)
\(338\) −1.63603 + 2.83369i −0.0889884 + 0.154132i
\(339\) 0 0
\(340\) −3.05976 + 1.76655i −0.165939 + 0.0958048i
\(341\) −6.06272 + 27.0321i −0.328315 + 1.46387i
\(342\) 0 0
\(343\) 20.1228i 1.08653i
\(344\) −10.0170 + 5.78333i −0.540082 + 0.311816i
\(345\) 0 0
\(346\) 10.2188 17.6995i 0.549368 0.951533i
\(347\) 13.0830 22.6604i 0.702332 1.21648i −0.265314 0.964162i \(-0.585475\pi\)
0.967646 0.252313i \(-0.0811912\pi\)
\(348\) 0 0
\(349\) 27.7358 16.0132i 1.48466 0.857170i 0.484814 0.874618i \(-0.338887\pi\)
0.999848 + 0.0174479i \(0.00555413\pi\)
\(350\) 2.23785i 0.119618i
\(351\) 0 0
\(352\) 0.725816 3.23623i 0.0386861 0.172492i
\(353\) 20.2217 11.6750i 1.07629 0.621397i 0.146398 0.989226i \(-0.453232\pi\)
0.929894 + 0.367829i \(0.119899\pi\)
\(354\) 0 0
\(355\) −0.582327 + 1.00862i −0.0309067 + 0.0535320i
\(356\) 0.232994 + 0.134519i 0.0123487 + 0.00712952i
\(357\) 0 0
\(358\) 17.3418 10.0123i 0.916545 0.529168i
\(359\) 18.2033 0.960731 0.480366 0.877068i \(-0.340504\pi\)
0.480366 + 0.877068i \(0.340504\pi\)
\(360\) 0 0
\(361\) 18.5786 0.977820
\(362\) 11.1989 + 19.3971i 0.588602 + 1.01949i
\(363\) 0 0
\(364\) −3.48989 + 6.04467i −0.182920 + 0.316827i
\(365\) −0.701804 + 1.21556i −0.0367341 + 0.0636253i
\(366\) 0 0
\(367\) −10.7997 18.7057i −0.563741 0.976428i −0.997166 0.0752382i \(-0.976028\pi\)
0.433425 0.901190i \(-0.357305\pi\)
\(368\) 1.99547i 0.104021i
\(369\) 0 0
\(370\) 3.00315i 0.156126i
\(371\) −4.42266 7.66028i −0.229613 0.397702i
\(372\) 0 0
\(373\) 5.03375 + 2.90624i 0.260638 + 0.150479i 0.624626 0.780924i \(-0.285252\pi\)
−0.363988 + 0.931404i \(0.618585\pi\)
\(374\) −8.61990 7.93780i −0.445724 0.410454i
\(375\) 0 0
\(376\) −5.60838 + 3.23800i −0.289230 + 0.166987i
\(377\) 0.331672i 0.0170820i
\(378\) 0 0
\(379\) −35.6346 −1.83043 −0.915213 0.402970i \(-0.867978\pi\)
−0.915213 + 0.402970i \(0.867978\pi\)
\(380\) 0.324583 + 0.562194i 0.0166507 + 0.0288399i
\(381\) 0 0
\(382\) 1.37544 + 0.794110i 0.0703736 + 0.0406302i
\(383\) 24.4144 + 14.0957i 1.24752 + 0.720254i 0.970614 0.240644i \(-0.0773585\pi\)
0.276903 + 0.960898i \(0.410692\pi\)
\(384\) 0 0
\(385\) 7.08408 2.21445i 0.361038 0.112859i
\(386\) 25.8287i 1.31465i
\(387\) 0 0
\(388\) 5.06302 0.257036
\(389\) 1.82484 1.05357i 0.0925229 0.0534181i −0.453025 0.891498i \(-0.649655\pi\)
0.545548 + 0.838080i \(0.316322\pi\)
\(390\) 0 0
\(391\) 6.10566 + 3.52510i 0.308776 + 0.178272i
\(392\) −0.996003 + 1.72513i −0.0503057 + 0.0871321i
\(393\) 0 0
\(394\) 10.0166 + 17.3492i 0.504628 + 0.874042i
\(395\) 2.99132 0.150510
\(396\) 0 0
\(397\) 10.4728 0.525615 0.262808 0.964848i \(-0.415352\pi\)
0.262808 + 0.964848i \(0.415352\pi\)
\(398\) −0.816811 1.41476i −0.0409430 0.0709154i
\(399\) 0 0
\(400\) 0.500000 0.866025i 0.0250000 0.0433013i
\(401\) 21.0553 + 12.1563i 1.05145 + 0.607055i 0.923055 0.384668i \(-0.125684\pi\)
0.128396 + 0.991723i \(0.459017\pi\)
\(402\) 0 0
\(403\) 22.5622 13.0263i 1.12390 0.648887i
\(404\) −1.25098 −0.0622385
\(405\) 0 0
\(406\) 0.237974i 0.0118105i
\(407\) 9.50667 2.97174i 0.471228 0.147304i
\(408\) 0 0
\(409\) 26.4890 + 15.2934i 1.30980 + 0.756212i 0.982062 0.188557i \(-0.0603810\pi\)
0.327736 + 0.944769i \(0.393714\pi\)
\(410\) 2.39717 + 1.38401i 0.118388 + 0.0683513i
\(411\) 0 0
\(412\) 4.34798 + 7.53091i 0.214209 + 0.371022i
\(413\) 7.24466 0.356487
\(414\) 0 0
\(415\) 9.83485i 0.482774i
\(416\) −2.70110 + 1.55948i −0.132432 + 0.0764599i
\(417\) 0 0
\(418\) −1.45847 + 1.58380i −0.0713363 + 0.0774662i
\(419\) −17.5066 10.1075i −0.855255 0.493782i 0.00716547 0.999974i \(-0.497719\pi\)
−0.862420 + 0.506193i \(0.831052\pi\)
\(420\) 0 0
\(421\) −4.03827 6.99449i −0.196813 0.340891i 0.750680 0.660666i \(-0.229726\pi\)
−0.947493 + 0.319775i \(0.896393\pi\)
\(422\) 16.0282i 0.780242i
\(423\) 0 0
\(424\) 3.95259i 0.191955i
\(425\) −1.76655 3.05976i −0.0856905 0.148420i
\(426\) 0 0
\(427\) −14.7378 + 25.5267i −0.713214 + 1.23532i
\(428\) 3.73958 6.47714i 0.180759 0.313084i
\(429\) 0 0
\(430\) −5.78333 10.0170i −0.278897 0.483064i
\(431\) 17.0692 0.822197 0.411098 0.911591i \(-0.365145\pi\)
0.411098 + 0.911591i \(0.365145\pi\)
\(432\) 0 0
\(433\) −40.2925 −1.93634 −0.968168 0.250303i \(-0.919470\pi\)
−0.968168 + 0.250303i \(0.919470\pi\)
\(434\) −16.1884 + 9.34637i −0.777067 + 0.448640i
\(435\) 0 0
\(436\) −9.87786 5.70298i −0.473063 0.273123i
\(437\) 0.647694 1.12184i 0.0309834 0.0536649i
\(438\) 0 0
\(439\) −18.7045 + 10.7991i −0.892719 + 0.515411i −0.874831 0.484429i \(-0.839028\pi\)
−0.0178880 + 0.999840i \(0.505694\pi\)
\(440\) 3.23623 + 0.725816i 0.154281 + 0.0346019i
\(441\) 0 0
\(442\) 11.0196i 0.524151i
\(443\) 14.2248 8.21271i 0.675842 0.390198i −0.122445 0.992475i \(-0.539073\pi\)
0.798287 + 0.602278i \(0.205740\pi\)
\(444\) 0 0
\(445\) −0.134519 + 0.232994i −0.00637683 + 0.0110450i
\(446\) −4.23876 + 7.34175i −0.200711 + 0.347642i
\(447\) 0 0
\(448\) 1.93804 1.11893i 0.0915637 0.0528644i
\(449\) 22.2449i 1.04980i 0.851163 + 0.524901i \(0.175898\pi\)
−0.851163 + 0.524901i \(0.824102\pi\)
\(450\) 0 0
\(451\) −2.00907 + 8.95794i −0.0946034 + 0.421813i
\(452\) 11.2536 6.49729i 0.529327 0.305607i
\(453\) 0 0
\(454\) 3.63551 6.29688i 0.170623 0.295527i
\(455\) −6.04467 3.48989i −0.283379 0.163609i
\(456\) 0 0
\(457\) −9.07476 + 5.23932i −0.424500 + 0.245085i −0.697001 0.717071i \(-0.745483\pi\)
0.272501 + 0.962155i \(0.412149\pi\)
\(458\) 14.2004 0.663540
\(459\) 0 0
\(460\) −1.99547 −0.0930392
\(461\) 13.9519 + 24.1654i 0.649804 + 1.12549i 0.983169 + 0.182696i \(0.0584825\pi\)
−0.333365 + 0.942798i \(0.608184\pi\)
\(462\) 0 0
\(463\) 20.7852 36.0010i 0.965970 1.67311i 0.258983 0.965882i \(-0.416613\pi\)
0.706986 0.707227i \(-0.250054\pi\)
\(464\) 0.0531702 0.0920935i 0.00246837 0.00427533i
\(465\) 0 0
\(466\) −0.933478 1.61683i −0.0432425 0.0748983i
\(467\) 34.8128i 1.61095i −0.592632 0.805473i \(-0.701911\pi\)
0.592632 0.805473i \(-0.298089\pi\)
\(468\) 0 0
\(469\) 21.9975i 1.01575i
\(470\) −3.23800 5.60838i −0.149358 0.258696i
\(471\) 0 0
\(472\) 2.80361 + 1.61866i 0.129046 + 0.0745050i
\(473\) 25.9867 28.2198i 1.19487 1.29755i
\(474\) 0 0
\(475\) −0.562194 + 0.324583i −0.0257952 + 0.0148929i
\(476\) 7.90658i 0.362398i
\(477\) 0 0
\(478\) 25.7645 1.17844
\(479\) −18.0153 31.2034i −0.823139 1.42572i −0.903333 0.428939i \(-0.858887\pi\)
0.0801944 0.996779i \(-0.474446\pi\)
\(480\) 0 0
\(481\) −8.11181 4.68336i −0.369867 0.213543i
\(482\) 26.3093 + 15.1897i 1.19836 + 0.691872i
\(483\) 0 0
\(484\) 0.904760 + 10.9627i 0.0411255 + 0.498306i
\(485\) 5.06302i 0.229900i
\(486\) 0 0
\(487\) 23.2302 1.05266 0.526331 0.850280i \(-0.323567\pi\)
0.526331 + 0.850280i \(0.323567\pi\)
\(488\) −11.4068 + 6.58570i −0.516360 + 0.298121i
\(489\) 0 0
\(490\) −1.72513 0.996003i −0.0779333 0.0449948i
\(491\) −14.0156 + 24.2757i −0.632514 + 1.09555i 0.354521 + 0.935048i \(0.384644\pi\)
−0.987036 + 0.160499i \(0.948690\pi\)
\(492\) 0 0
\(493\) −0.187856 0.325376i −0.00846061 0.0146542i
\(494\) 2.02472 0.0910966
\(495\) 0 0
\(496\) −8.35297 −0.375059
\(497\) −1.30316 2.25714i −0.0584549 0.101247i
\(498\) 0 0
\(499\) 9.73187 16.8561i 0.435658 0.754582i −0.561691 0.827347i \(-0.689849\pi\)
0.997349 + 0.0727649i \(0.0231823\pi\)
\(500\) 0.866025 + 0.500000i 0.0387298 + 0.0223607i
\(501\) 0 0
\(502\) 0.561359 0.324101i 0.0250547 0.0144653i
\(503\) 25.6161 1.14217 0.571083 0.820892i \(-0.306523\pi\)
0.571083 + 0.820892i \(0.306523\pi\)
\(504\) 0 0
\(505\) 1.25098i 0.0556678i
\(506\) −1.97460 6.31679i −0.0877815 0.280815i
\(507\) 0 0
\(508\) −3.01086 1.73832i −0.133586 0.0771256i
\(509\) 6.65944 + 3.84483i 0.295175 + 0.170419i 0.640273 0.768147i \(-0.278821\pi\)
−0.345098 + 0.938566i \(0.612154\pi\)
\(510\) 0 0
\(511\) −1.57054 2.72025i −0.0694764 0.120337i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 2.06058i 0.0908883i
\(515\) −7.53091 + 4.34798i −0.331852 + 0.191595i
\(516\) 0 0
\(517\) 14.5496 15.7998i 0.639890 0.694876i
\(518\) 5.82022 + 3.36031i 0.255726 + 0.147643i
\(519\) 0 0
\(520\) −1.55948 2.70110i −0.0683878 0.118451i
\(521\) 9.19977i 0.403049i 0.979483 + 0.201525i \(0.0645896\pi\)
−0.979483 + 0.201525i \(0.935410\pi\)
\(522\) 0 0
\(523\) 19.8490i 0.867937i −0.900928 0.433968i \(-0.857113\pi\)
0.900928 0.433968i \(-0.142887\pi\)
\(524\) −1.86412 3.22874i −0.0814343 0.141048i
\(525\) 0 0
\(526\) 4.15995 7.20525i 0.181383 0.314164i
\(527\) −14.7560 + 25.5581i −0.642780 + 1.11333i
\(528\) 0 0
\(529\) −9.50905 16.4702i −0.413437 0.716094i
\(530\) 3.95259 0.171690
\(531\) 0 0
\(532\) −1.45274 −0.0629842
\(533\) 7.47669 4.31667i 0.323851 0.186976i
\(534\) 0 0
\(535\) 6.47714 + 3.73958i 0.280031 + 0.161676i
\(536\) 4.91487 8.51280i 0.212290 0.367697i
\(537\) 0 0
\(538\) −6.18320 + 3.56987i −0.266577 + 0.153908i
\(539\) 1.44583 6.44659i 0.0622763 0.277674i
\(540\) 0 0
\(541\) 21.7443i 0.934859i −0.884030 0.467429i \(-0.845180\pi\)
0.884030 0.467429i \(-0.154820\pi\)
\(542\) −22.2335 + 12.8365i −0.955009 + 0.551375i
\(543\) 0 0
\(544\) 1.76655 3.05976i 0.0757404 0.131186i
\(545\) 5.70298 9.87786i 0.244289 0.423121i
\(546\) 0 0
\(547\) −19.2159 + 11.0943i −0.821611 + 0.474357i −0.850972 0.525211i \(-0.823986\pi\)
0.0293606 + 0.999569i \(0.490653\pi\)
\(548\) 2.67480i 0.114262i
\(549\) 0 0
\(550\) −0.725816 + 3.23623i −0.0309489 + 0.137993i
\(551\) −0.0597839 + 0.0345163i −0.00254688 + 0.00147044i
\(552\) 0 0
\(553\) −3.34707 + 5.79730i −0.142332 + 0.246526i
\(554\) 15.8621 + 9.15799i 0.673916 + 0.389086i
\(555\) 0 0
\(556\) 6.75836 3.90194i 0.286618 0.165479i
\(557\) −10.9699 −0.464808 −0.232404 0.972619i \(-0.574659\pi\)
−0.232404 + 0.972619i \(0.574659\pi\)
\(558\) 0 0
\(559\) −36.0760 −1.52585
\(560\) 1.11893 + 1.93804i 0.0472833 + 0.0818971i
\(561\) 0 0
\(562\) −11.3351 + 19.6330i −0.478143 + 0.828168i
\(563\) 11.9763 20.7435i 0.504740 0.874236i −0.495245 0.868754i \(-0.664922\pi\)
0.999985 0.00548240i \(-0.00174511\pi\)
\(564\) 0 0
\(565\) 6.49729 + 11.2536i 0.273343 + 0.473444i
\(566\) 29.3060i 1.23182i
\(567\) 0 0
\(568\) 1.16465i 0.0488678i
\(569\) 7.37244 + 12.7694i 0.309069 + 0.535322i 0.978159 0.207859i \(-0.0666494\pi\)
−0.669090 + 0.743181i \(0.733316\pi\)
\(570\) 0 0
\(571\) −16.8538 9.73053i −0.705309 0.407210i 0.104013 0.994576i \(-0.466832\pi\)
−0.809322 + 0.587366i \(0.800165\pi\)
\(572\) 7.00735 7.60949i 0.292992 0.318169i
\(573\) 0 0
\(574\) −5.36452 + 3.09721i −0.223911 + 0.129275i
\(575\) 1.99547i 0.0832168i
\(576\) 0 0
\(577\) −30.7153 −1.27869 −0.639347 0.768919i \(-0.720795\pi\)
−0.639347 + 0.768919i \(0.720795\pi\)
\(578\) 2.25857 + 3.91197i 0.0939443 + 0.162716i
\(579\) 0 0
\(580\) 0.0920935 + 0.0531702i 0.00382397 + 0.00220777i
\(581\) −19.0603 11.0045i −0.790755 0.456543i
\(582\) 0 0
\(583\) 3.91125 + 12.5122i 0.161987 + 0.518202i
\(584\) 1.40361i 0.0580817i
\(585\) 0 0
\(586\) −20.5103 −0.847274
\(587\) 16.3401 9.43395i 0.674427 0.389381i −0.123325 0.992366i \(-0.539356\pi\)
0.797752 + 0.602986i \(0.206022\pi\)
\(588\) 0 0
\(589\) 4.69599 + 2.71123i 0.193495 + 0.111714i
\(590\) −1.61866 + 2.80361i −0.0666393 + 0.115423i
\(591\) 0 0
\(592\) 1.50157 + 2.60080i 0.0617143 + 0.106892i
\(593\) 17.7380 0.728413 0.364206 0.931318i \(-0.381340\pi\)
0.364206 + 0.931318i \(0.381340\pi\)
\(594\) 0 0
\(595\) 7.90658 0.324138
\(596\) −0.0324085 0.0561333i −0.00132751 0.00229931i
\(597\) 0 0
\(598\) −3.11190 + 5.38996i −0.127255 + 0.220412i
\(599\) −31.6791 18.2899i −1.29437 0.747306i −0.314946 0.949109i \(-0.601987\pi\)
−0.979426 + 0.201803i \(0.935320\pi\)
\(600\) 0 0
\(601\) 18.8025 10.8556i 0.766971 0.442811i −0.0648219 0.997897i \(-0.520648\pi\)
0.831793 + 0.555086i \(0.187315\pi\)
\(602\) 25.8845 1.05497
\(603\) 0 0
\(604\) 14.7717i 0.601050i
\(605\) −10.9627 + 0.904760i −0.445698 + 0.0367837i
\(606\) 0 0
\(607\) 2.44027 + 1.40889i 0.0990475 + 0.0571851i 0.548706 0.836016i \(-0.315121\pi\)
−0.449658 + 0.893201i \(0.648454\pi\)
\(608\) −0.562194 0.324583i −0.0228000 0.0131636i
\(609\) 0 0
\(610\) −6.58570 11.4068i −0.266647 0.461846i
\(611\) −20.1984 −0.817141
\(612\) 0 0
\(613\) 2.12088i 0.0856617i 0.999082 + 0.0428308i \(0.0136377\pi\)
−0.999082 + 0.0428308i \(0.986362\pi\)
\(614\) −18.8630 + 10.8906i −0.761249 + 0.439507i
\(615\) 0 0
\(616\) −5.02777 + 5.45981i −0.202575 + 0.219982i
\(617\) −38.0414 21.9632i −1.53149 0.884206i −0.999293 0.0375859i \(-0.988033\pi\)
−0.532197 0.846620i \(-0.678633\pi\)
\(618\) 0 0
\(619\) 12.8087 + 22.1853i 0.514825 + 0.891703i 0.999852 + 0.0172042i \(0.00547653\pi\)
−0.485027 + 0.874499i \(0.661190\pi\)
\(620\) 8.35297i 0.335463i
\(621\) 0 0
\(622\) 2.03320i 0.0815239i
\(623\) −0.301035 0.521408i −0.0120607 0.0208898i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −12.2823 + 21.2735i −0.490899 + 0.850261i
\(627\) 0 0
\(628\) −4.61431 7.99222i −0.184131 0.318924i
\(629\) 10.6104 0.423066
\(630\) 0 0
\(631\) 20.1742 0.803122 0.401561 0.915832i \(-0.368468\pi\)
0.401561 + 0.915832i \(0.368468\pi\)
\(632\) −2.59056 + 1.49566i −0.103047 + 0.0594942i
\(633\) 0 0
\(634\) 15.0163 + 8.66967i 0.596374 + 0.344316i
\(635\) 1.73832 3.01086i 0.0689833 0.119483i
\(636\) 0 0
\(637\) −5.38061 + 3.10650i −0.213187 + 0.123084i
\(638\) −0.0771836 + 0.344142i −0.00305573 + 0.0136247i
\(639\) 0 0
\(640\) 1.00000i 0.0395285i
\(641\) 15.9881 9.23075i 0.631493 0.364593i −0.149837 0.988711i \(-0.547875\pi\)
0.781330 + 0.624118i \(0.214542\pi\)
\(642\) 0 0
\(643\) 10.0429 17.3949i 0.396054 0.685986i −0.597181 0.802107i \(-0.703713\pi\)
0.993235 + 0.116120i \(0.0370459\pi\)
\(644\) 2.23278 3.86730i 0.0879840 0.152393i
\(645\) 0 0
\(646\) −1.98629 + 1.14679i −0.0781496 + 0.0451197i
\(647\) 3.97837i 0.156406i −0.996937 0.0782030i \(-0.975082\pi\)
0.996937 0.0782030i \(-0.0249182\pi\)
\(648\) 0 0
\(649\) −10.4767 2.34970i −0.411248 0.0922339i
\(650\) 2.70110 1.55948i 0.105946 0.0611679i
\(651\) 0 0
\(652\) 0.846349 1.46592i 0.0331456 0.0574098i
\(653\) −36.6216 21.1435i −1.43311 0.827409i −0.435757 0.900064i \(-0.643519\pi\)
−0.997357 + 0.0726555i \(0.976853\pi\)
\(654\) 0 0
\(655\) 3.22874 1.86412i 0.126157 0.0728370i
\(656\) −2.76801 −0.108073
\(657\) 0 0
\(658\) 14.4924 0.564971
\(659\) 11.5514 + 20.0076i 0.449978 + 0.779384i 0.998384 0.0568277i \(-0.0180986\pi\)
−0.548406 + 0.836212i \(0.684765\pi\)
\(660\) 0 0
\(661\) −8.61084 + 14.9144i −0.334923 + 0.580104i −0.983470 0.181071i \(-0.942044\pi\)
0.648547 + 0.761175i \(0.275377\pi\)
\(662\) 8.70296 15.0740i 0.338250 0.585867i
\(663\) 0 0
\(664\) −4.91742 8.51723i −0.190833 0.330532i
\(665\) 1.45274i 0.0563348i
\(666\) 0 0
\(667\) 0.212199i 0.00821638i
\(668\) −8.19719 14.1980i −0.317159 0.549335i
\(669\) 0 0
\(670\) 8.51280 + 4.91487i 0.328878 + 0.189878i
\(671\) 29.5921 32.1349i 1.14239 1.24055i
\(672\) 0 0
\(673\) −10.9871 + 6.34342i −0.423522 + 0.244521i −0.696583 0.717476i \(-0.745297\pi\)
0.273061 + 0.961997i \(0.411964\pi\)
\(674\) 13.9985i 0.539200i
\(675\) 0 0
\(676\) 3.27206 0.125849
\(677\) 4.74555 + 8.21953i 0.182386 + 0.315902i 0.942693 0.333662i \(-0.108285\pi\)
−0.760306 + 0.649565i \(0.774951\pi\)
\(678\) 0 0
\(679\) −9.81234 5.66516i −0.376563 0.217409i
\(680\) 3.05976 + 1.76655i 0.117336 + 0.0677443i
\(681\) 0 0
\(682\) 26.4419 8.26560i 1.01251 0.316506i
\(683\) 27.3499i 1.04651i 0.852175 + 0.523257i \(0.175283\pi\)
−0.852175 + 0.523257i \(0.824717\pi\)
\(684\) 0 0
\(685\) 2.67480 0.102199
\(686\) 17.4269 10.0614i 0.665361 0.384146i
\(687\) 0 0
\(688\) 10.0170 + 5.78333i 0.381896 + 0.220487i
\(689\) 6.16400 10.6764i 0.234830 0.406737i
\(690\) 0 0
\(691\) 18.0682 + 31.2950i 0.687346 + 1.19052i 0.972693 + 0.232093i \(0.0745575\pi\)
−0.285348 + 0.958424i \(0.592109\pi\)
\(692\) −20.4377 −0.776923
\(693\) 0 0
\(694\) −26.1660 −0.993248
\(695\) 3.90194 + 6.75836i 0.148009 + 0.256359i
\(696\) 0 0
\(697\) −4.88985 + 8.46946i −0.185216 + 0.320804i
\(698\) −27.7358 16.0132i −1.04981 0.606110i
\(699\) 0 0
\(700\) −1.93804 + 1.11893i −0.0732510 + 0.0422915i
\(701\) 8.65997 0.327083 0.163541 0.986536i \(-0.447708\pi\)
0.163541 + 0.986536i \(0.447708\pi\)
\(702\) 0 0
\(703\) 1.94954i 0.0735283i
\(704\) −3.16557 + 0.989540i −0.119307 + 0.0372947i
\(705\) 0 0
\(706\) −20.2217 11.6750i −0.761053 0.439394i
\(707\) 2.42444 + 1.39975i 0.0911806 + 0.0526431i
\(708\) 0 0
\(709\) 14.0217 + 24.2864i 0.526598 + 0.912094i 0.999520 + 0.0309898i \(0.00986594\pi\)
−0.472922 + 0.881104i \(0.656801\pi\)
\(710\) 1.16465 0.0437087
\(711\) 0 0
\(712\) 0.269039i 0.0100827i
\(713\) −14.4350 + 8.33405i −0.540595 + 0.312112i
\(714\) 0 0
\(715\) 7.60949 + 7.00735i 0.284579 + 0.262060i
\(716\) −17.3418 10.0123i −0.648095 0.374178i
\(717\) 0 0
\(718\) −9.10163 15.7645i −0.339670 0.588325i
\(719\) 25.5223i 0.951820i −0.879494 0.475910i \(-0.842119\pi\)
0.879494 0.475910i \(-0.157881\pi\)
\(720\) 0 0
\(721\) 19.4603i 0.724739i
\(722\) −9.28929 16.0895i −0.345712 0.598790i
\(723\) 0 0
\(724\) 11.1989 19.3971i 0.416204 0.720887i
\(725\) −0.0531702 + 0.0920935i −0.00197469 + 0.00342027i
\(726\) 0 0
\(727\) −22.7537 39.4106i −0.843889 1.46166i −0.886582 0.462571i \(-0.846927\pi\)
0.0426928 0.999088i \(-0.486406\pi\)
\(728\) 6.97979 0.258688
\(729\) 0 0
\(730\) 1.40361 0.0519499
\(731\) 35.3912 20.4331i 1.30899 0.755747i
\(732\) 0 0
\(733\) −1.96896 1.13678i −0.0727253 0.0419880i 0.463196 0.886256i \(-0.346702\pi\)
−0.535922 + 0.844268i \(0.680036\pi\)
\(734\) −10.7997 + 18.7057i −0.398625 + 0.690439i
\(735\) 0 0
\(736\) 1.72813 0.997734i 0.0636996 0.0367770i
\(737\) −7.13458 + 31.8113i −0.262806 + 1.17178i
\(738\) 0 0
\(739\) 2.04843i 0.0753526i 0.999290 + 0.0376763i \(0.0119956\pi\)
−0.999290 + 0.0376763i \(0.988004\pi\)
\(740\) −2.60080 + 1.50157i −0.0956074 + 0.0551990i
\(741\) 0 0
\(742\) −4.42266 + 7.66028i −0.162361 + 0.281218i
\(743\) 23.2197 40.2176i 0.851847 1.47544i −0.0276930 0.999616i \(-0.508816\pi\)
0.879540 0.475825i \(-0.157851\pi\)
\(744\) 0 0
\(745\) 0.0561333 0.0324085i 0.00205656 0.00118736i
\(746\) 5.81248i 0.212810i
\(747\) 0 0
\(748\) −2.56439 + 11.4340i −0.0937633 + 0.418067i
\(749\) −14.4949 + 8.36864i −0.529632 + 0.305783i
\(750\) 0 0
\(751\) 3.66422 6.34662i 0.133709 0.231592i −0.791394 0.611306i \(-0.790644\pi\)
0.925104 + 0.379715i \(0.123978\pi\)
\(752\) 5.60838 + 3.23800i 0.204517 + 0.118078i
\(753\) 0 0
\(754\) 0.287236 0.165836i 0.0104605 0.00603939i
\(755\) 14.7717 0.537596
\(756\) 0 0
\(757\) 32.5935 1.18463 0.592315 0.805706i \(-0.298214\pi\)
0.592315 + 0.805706i \(0.298214\pi\)
\(758\) 17.8173 + 30.8605i 0.647153 + 1.12090i
\(759\) 0 0
\(760\) 0.324583 0.562194i 0.0117738 0.0203929i
\(761\) −26.8972 + 46.5873i −0.975023 + 1.68879i −0.295165 + 0.955446i \(0.595375\pi\)
−0.679858 + 0.733343i \(0.737959\pi\)
\(762\) 0 0
\(763\) 12.7624 + 22.1052i 0.462032 + 0.800262i
\(764\) 1.58822i 0.0574598i
\(765\) 0 0
\(766\) 28.1913i 1.01859i
\(767\) 5.04855 + 8.74435i 0.182293 + 0.315740i
\(768\) 0 0
\(769\) −46.7234 26.9758i −1.68489 0.972771i −0.958329 0.285668i \(-0.907784\pi\)
−0.726560 0.687103i \(-0.758882\pi\)
\(770\) −5.45981 5.02777i −0.196758 0.181188i
\(771\) 0 0
\(772\) −22.3683 + 12.9144i −0.805053 + 0.464798i
\(773\) 19.9741i 0.718417i −0.933257 0.359209i \(-0.883047\pi\)
0.933257 0.359209i \(-0.116953\pi\)
\(774\) 0 0
\(775\) 8.35297 0.300048
\(776\) −2.53151 4.38471i −0.0908760 0.157402i
\(777\) 0 0
\(778\) −1.82484 1.05357i −0.0654236 0.0377723i
\(779\) 1.55616 + 0.898450i 0.0557552 + 0.0321903i
\(780\) 0 0
\(781\) 1.15247 + 3.68679i 0.0412387 + 0.131924i
\(782\) 7.05021i 0.252115i
\(783\) 0 0
\(784\) 1.99201 0.0711430
\(785\) 7.99222 4.61431i 0.285255 0.164692i
\(786\) 0 0
\(787\) 33.9688 + 19.6119i 1.21086 + 0.699088i 0.962946 0.269696i \(-0.0869231\pi\)
0.247910 + 0.968783i \(0.420256\pi\)
\(788\) 10.0166 17.3492i 0.356826 0.618041i
\(789\) 0 0
\(790\) −1.49566 2.59056i −0.0532133 0.0921681i
\(791\) −29.0800 −1.03397
\(792\) 0 0
\(793\) −41.0811 −1.45883
\(794\) −5.23641 9.06972i −0.185833 0.321872i
\(795\) 0 0
\(796\) −0.816811 + 1.41476i −0.0289511 + 0.0501448i
\(797\) −28.2733 16.3236i −1.00149 0.578212i −0.0928024 0.995685i \(-0.529582\pi\)
−0.908689 + 0.417473i \(0.862916\pi\)
\(798\) 0 0
\(799\) 19.8150 11.4402i 0.701005 0.404726i
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 24.3125i 0.858506i
\(803\) 1.38893 + 4.44322i 0.0490142 + 0.156798i
\(804\) 0 0
\(805\) 3.86730 + 2.23278i 0.136304 + 0.0786953i
\(806\) −22.5622 13.0263i −0.794721 0.458832i
\(807\) 0 0
\(808\) 0.625489 + 1.08338i 0.0220046 + 0.0381131i
\(809\) 0.748177 0.0263045 0.0131523 0.999914i \(-0.495813\pi\)
0.0131523 + 0.999914i \(0.495813\pi\)
\(810\) 0 0
\(811\) 26.0618i 0.915155i −0.889170 0.457577i \(-0.848717\pi\)
0.889170 0.457577i \(-0.151283\pi\)
\(812\) −0.206092 + 0.118987i −0.00723241 + 0.00417563i
\(813\) 0 0
\(814\) −7.32693 6.74715i −0.256809 0.236487i
\(815\) 1.46592 + 0.846349i 0.0513489 + 0.0296463i
\(816\) 0 0
\(817\) −3.75434 6.50270i −0.131348 0.227501i
\(818\) 30.5869i 1.06945i
\(819\) 0 0
\(820\) 2.76801i 0.0966633i
\(821\) 8.01351 + 13.8798i 0.279673 + 0.484409i 0.971304 0.237843i \(-0.0764405\pi\)
−0.691630 + 0.722252i \(0.743107\pi\)
\(822\) 0 0
\(823\) 21.2864 36.8691i 0.741997 1.28518i −0.209587 0.977790i \(-0.567212\pi\)
0.951585 0.307387i \(-0.0994546\pi\)
\(824\) 4.34798 7.53091i 0.151469 0.262352i
\(825\) 0 0
\(826\) −3.62233 6.27406i −0.126037 0.218303i
\(827\) 26.1822 0.910444 0.455222 0.890378i \(-0.349560\pi\)
0.455222 + 0.890378i \(0.349560\pi\)
\(828\) 0 0
\(829\) 32.5134 1.12924 0.564618 0.825353i \(-0.309024\pi\)
0.564618 + 0.825353i \(0.309024\pi\)
\(830\) 8.51723 4.91742i 0.295637 0.170686i
\(831\) 0 0
\(832\) 2.70110 + 1.55948i 0.0936439 + 0.0540653i
\(833\) 3.51898 6.09506i 0.121926 0.211181i
\(834\) 0 0
\(835\) 14.1980 8.19719i 0.491340 0.283676i
\(836\) 2.10085 + 0.471175i 0.0726594 + 0.0162959i
\(837\) 0 0
\(838\) 20.2149i 0.698313i
\(839\) 44.5464 25.7189i 1.53791 0.887915i 0.538953 0.842336i \(-0.318820\pi\)
0.998961 0.0455791i \(-0.0145133\pi\)
\(840\) 0 0
\(841\) 14.4943 25.1049i 0.499805 0.865688i
\(842\) −4.03827 + 6.99449i −0.139168 + 0.241046i
\(843\) 0 0
\(844\) 13.8809 8.01412i 0.477799 0.275857i
\(845\) 3.27206i 0.112562i
\(846\) 0 0
\(847\) 10.5130 22.2586i 0.361232 0.764813i
\(848\) −3.42305 + 1.97630i −0.117548 + 0.0678663i
\(849\) 0 0
\(850\) −1.76655 + 3.05976i −0.0605923 + 0.104949i
\(851\) 5.18982 + 2.99634i 0.177905 + 0.102713i
\(852\) 0 0
\(853\) 24.8106 14.3244i 0.849498 0.490458i −0.0109834 0.999940i \(-0.503496\pi\)
0.860481 + 0.509482i \(0.170163\pi\)
\(854\) 29.4757 1.00864
\(855\) 0 0
\(856\) −7.47916 −0.255632
\(857\) 13.3156 + 23.0633i 0.454852 + 0.787826i 0.998680 0.0513704i \(-0.0163589\pi\)
−0.543828 + 0.839197i \(0.683026\pi\)
\(858\) 0 0
\(859\) 21.2715 36.8433i 0.725773 1.25708i −0.232882 0.972505i \(-0.574815\pi\)
0.958655 0.284571i \(-0.0918512\pi\)
\(860\) −5.78333 + 10.0170i −0.197210 + 0.341578i
\(861\) 0 0
\(862\) −8.53462 14.7824i −0.290690 0.503491i
\(863\) 18.5594i 0.631770i −0.948797 0.315885i \(-0.897699\pi\)
0.948797 0.315885i \(-0.102301\pi\)
\(864\) 0 0
\(865\) 20.4377i 0.694901i
\(866\) 20.1463 + 34.8943i 0.684598 + 1.18576i
\(867\) 0 0
\(868\) 16.1884 + 9.34637i 0.549470 + 0.317236i
\(869\) 6.72058 7.29808i 0.227980 0.247570i
\(870\) 0 0
\(871\) 26.5511 15.3293i 0.899650 0.519413i
\(872\) 11.4060i 0.386255i
\(873\) 0 0
\(874\) −1.29539 −0.0438172
\(875\) −1.11893 1.93804i −0.0378267 0.0655177i
\(876\) 0 0
\(877\) −37.5715 21.6919i −1.26870 0.732484i −0.293957 0.955819i \(-0.594972\pi\)
−0.974742 + 0.223335i \(0.928306\pi\)
\(878\) 18.7045 + 10.7991i 0.631248 + 0.364451i
\(879\) 0 0
\(880\) −0.989540 3.16557i −0.0333574 0.106711i
\(881\) 54.3837i 1.83223i 0.400913 + 0.916116i \(0.368693\pi\)
−0.400913 + 0.916116i \(0.631307\pi\)
\(882\) 0 0
\(883\) 22.5423 0.758607 0.379304 0.925272i \(-0.376164\pi\)
0.379304 + 0.925272i \(0.376164\pi\)
\(884\) 9.54329 5.50982i 0.320975 0.185315i
\(885\) 0 0
\(886\) −14.2248 8.21271i −0.477892 0.275911i
\(887\) 8.42281 14.5887i 0.282810 0.489842i −0.689266 0.724509i \(-0.742067\pi\)
0.972076 + 0.234667i \(0.0754000\pi\)
\(888\) 0 0
\(889\) 3.89012 + 6.73788i 0.130470 + 0.225981i
\(890\) 0.269039 0.00901820
\(891\) 0 0
\(892\) 8.47752 0.283848
\(893\) −2.10200 3.64077i −0.0703407 0.121834i
\(894\) 0 0
\(895\) 10.0123 17.3418i 0.334675 0.579674i
\(896\) −1.93804 1.11893i −0.0647453 0.0373807i
\(897\) 0 0
\(898\) 19.2646 11.1224i 0.642870 0.371161i
\(899\) 0.888258 0.0296251
\(900\) 0 0
\(901\) 13.9649i 0.465239i
\(902\) 8.76233 2.73906i 0.291754 0.0912008i
\(903\) 0 0
\(904\) −11.2536 6.49729i −0.374290 0.216097i
\(905\) 19.3971 + 11.1989i 0.644781 + 0.372264i
\(906\) 0 0
\(907\) 6.38593 + 11.0608i 0.212041 + 0.367266i 0.952353 0.304997i \(-0.0986555\pi\)
−0.740312 + 0.672264i \(0.765322\pi\)
\(908\) −7.27102 −0.241297
\(909\) 0 0
\(910\) 6.97979i 0.231378i
\(911\) 3.35433 1.93662i 0.111134 0.0641632i −0.443403 0.896323i \(-0.646229\pi\)
0.554537 + 0.832159i \(0.312896\pi\)
\(912\) 0 0
\(913\) 23.9946 + 22.0959i 0.794104 + 0.731266i
\(914\) 9.07476 + 5.23932i 0.300166 + 0.173301i
\(915\) 0 0
\(916\) −7.10018 12.2979i −0.234597 0.406333i
\(917\) 8.34324i 0.275518i
\(918\) 0 0
\(919\) 21.9222i 0.723147i −0.932344 0.361573i \(-0.882240\pi\)
0.932344 0.361573i \(-0.117760\pi\)
\(920\) 0.997734 + 1.72813i 0.0328943 + 0.0569746i
\(921\) 0 0
\(922\) 13.9519 24.1654i 0.459481 0.795845i
\(923\) 1.81626 3.14585i 0.0597828 0.103547i
\(924\) 0 0
\(925\) −1.50157 2.60080i −0.0493715 0.0855139i
\(926\) −41.5704 −1.36609
\(927\) 0 0
\(928\) −0.106340 −0.00349080
\(929\) 16.3628 9.44708i 0.536847 0.309949i −0.206953 0.978351i \(-0.566355\pi\)
0.743800 + 0.668402i \(0.233021\pi\)
\(930\) 0 0
\(931\) −1.11989 0.646570i −0.0367030 0.0211905i
\(932\) −0.933478 + 1.61683i −0.0305771 + 0.0529611i
\(933\) 0 0
\(934\) −30.1488 + 17.4064i −0.986499 + 0.569556i
\(935\) −11.4340 2.56439i −0.373930 0.0838644i
\(936\) 0 0
\(937\) 19.5862i 0.639854i 0.947442 + 0.319927i \(0.103658\pi\)
−0.947442 + 0.319927i \(0.896342\pi\)
\(938\) −19.0504 + 10.9988i −0.622018 + 0.359122i
\(939\) 0 0
\(940\) −3.23800 + 5.60838i −0.105612 + 0.182925i
\(941\) −26.7009 + 46.2473i −0.870424 + 1.50762i −0.00886483 + 0.999961i \(0.502822\pi\)
−0.861559 + 0.507658i \(0.830512\pi\)
\(942\) 0 0
\(943\) −4.78348 + 2.76174i −0.155772 + 0.0899347i
\(944\) 3.23733i 0.105366i
\(945\) 0 0
\(946\) −37.4324 8.39527i −1.21703 0.272954i
\(947\) 25.8265 14.9109i 0.839248 0.484540i −0.0177602 0.999842i \(-0.505654\pi\)
0.857009 + 0.515302i \(0.172320\pi\)
\(948\) 0 0
\(949\) 2.18890 3.79129i 0.0710548 0.123070i
\(950\) 0.562194 + 0.324583i 0.0182400 + 0.0105309i
\(951\) 0 0
\(952\) −6.84730 + 3.95329i −0.221922 + 0.128127i
\(953\) 1.51910 0.0492084 0.0246042 0.999697i \(-0.492167\pi\)
0.0246042 + 0.999697i \(0.492167\pi\)
\(954\) 0 0
\(955\) 1.58822 0.0513936
\(956\) −12.8822 22.3127i −0.416641 0.721644i
\(957\) 0 0
\(958\) −18.0153 + 31.2034i −0.582047 + 1.00814i
\(959\) −2.99291 + 5.18387i −0.0966460 + 0.167396i
\(960\) 0 0
\(961\) −19.3861 33.5777i −0.625357 1.08315i
\(962\) 9.36671i 0.301995i
\(963\) 0 0
\(964\) 30.3794i 0.978454i
\(965\) −12.9144 22.3683i −0.415728 0.720062i
\(966\) 0 0
\(967\) 13.6284 + 7.86838i 0.438261 + 0.253030i 0.702860 0.711329i \(-0.251906\pi\)
−0.264599 + 0.964359i \(0.585240\pi\)
\(968\) 9.04162 6.26491i 0.290609 0.201362i
\(969\) 0 0
\(970\) 4.38471 2.53151i 0.140784 0.0812819i
\(971\) 18.6803i 0.599480i 0.954021 + 0.299740i \(0.0969000\pi\)
−0.954021 + 0.299740i \(0.903100\pi\)
\(972\) 0 0
\(973\) −17.4640 −0.559869
\(974\) −11.6151 20.1179i −0.372172 0.644621i
\(975\) 0 0
\(976\) 11.4068 + 6.58570i 0.365122 + 0.210803i
\(977\) −41.0917 23.7243i −1.31464 0.759007i −0.331779 0.943357i \(-0.607649\pi\)
−0.982861 + 0.184350i \(0.940982\pi\)
\(978\) 0 0
\(979\) 0.266225 + 0.851660i 0.00850858 + 0.0272192i
\(980\) 1.99201i 0.0636323i
\(981\) 0 0
\(982\) 28.0312 0.894511
\(983\) −15.3785 + 8.87879i −0.490498 + 0.283189i −0.724781 0.688979i \(-0.758059\pi\)
0.234283 + 0.972168i \(0.424726\pi\)
\(984\) 0 0
\(985\) 17.3492 + 10.0166i 0.552793 + 0.319155i
\(986\) −0.187856 + 0.325376i −0.00598256 + 0.0103621i
\(987\) 0 0
\(988\) −1.01236 1.75346i −0.0322075 0.0557850i
\(989\) 23.0809 0.733930
\(990\) 0 0
\(991\) 19.1821 0.609338 0.304669 0.952458i \(-0.401454\pi\)
0.304669 + 0.952458i \(0.401454\pi\)
\(992\) 4.17649 + 7.23389i 0.132604 + 0.229676i
\(993\) 0 0
\(994\) −1.30316 + 2.25714i −0.0413338 + 0.0715923i
\(995\) −1.41476 0.816811i −0.0448508 0.0258946i
\(996\) 0 0
\(997\) −4.14157 + 2.39114i −0.131165 + 0.0757280i −0.564147 0.825675i \(-0.690795\pi\)
0.432982 + 0.901403i \(0.357461\pi\)
\(998\) −19.4637 −0.616114
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2970.2.t.a.2771.9 48
3.2 odd 2 990.2.t.b.131.8 yes 48
9.2 odd 6 2970.2.t.b.791.9 48
9.7 even 3 990.2.t.a.461.8 yes 48
11.10 odd 2 2970.2.t.b.2771.9 48
33.32 even 2 990.2.t.a.131.8 48
99.43 odd 6 990.2.t.b.461.8 yes 48
99.65 even 6 inner 2970.2.t.a.791.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.t.a.131.8 48 33.32 even 2
990.2.t.a.461.8 yes 48 9.7 even 3
990.2.t.b.131.8 yes 48 3.2 odd 2
990.2.t.b.461.8 yes 48 99.43 odd 6
2970.2.t.a.791.9 48 99.65 even 6 inner
2970.2.t.a.2771.9 48 1.1 even 1 trivial
2970.2.t.b.791.9 48 9.2 odd 6
2970.2.t.b.2771.9 48 11.10 odd 2