Defining parameters
Level: | \( N \) | \(=\) | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 990.t (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 99 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(432\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(990, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 448 | 96 | 352 |
Cusp forms | 416 | 96 | 320 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(990, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
990.2.t.a | $48$ | $7.905$ | None | \(-24\) | \(-2\) | \(0\) | \(0\) | ||
990.2.t.b | $48$ | $7.905$ | None | \(24\) | \(-2\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(990, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(990, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(198, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 2}\)