Newspace parameters
Level: | \( N \) | \(=\) | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 990.t (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.90518980011\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
131.1 | −0.500000 | − | 0.866025i | −1.72761 | + | 0.123910i | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | 0.971116 | + | 1.43420i | 4.54797 | − | 2.62577i | 1.00000 | 2.96929 | − | 0.428137i | − | 1.00000i | |||
131.2 | −0.500000 | − | 0.866025i | −1.69057 | + | 0.376790i | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | 1.17159 | + | 1.27568i | −0.803327 | + | 0.463801i | 1.00000 | 2.71606 | − | 1.27398i | 1.00000i | ||||
131.3 | −0.500000 | − | 0.866025i | −1.68610 | − | 0.396321i | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | 0.499825 | + | 1.65837i | 0.0653962 | − | 0.0377565i | 1.00000 | 2.68586 | + | 1.33647i | − | 1.00000i | |||
131.4 | −0.500000 | − | 0.866025i | −1.62493 | − | 0.599680i | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | 0.293125 | + | 1.70707i | −3.18423 | + | 1.83842i | 1.00000 | 2.28077 | + | 1.94887i | 1.00000i | ||||
131.5 | −0.500000 | − | 0.866025i | −1.60551 | + | 0.649887i | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | 1.36557 | + | 1.06546i | 3.00605 | − | 1.73554i | 1.00000 | 2.15529 | − | 2.08679i | 1.00000i | ||||
131.6 | −0.500000 | − | 0.866025i | −1.28087 | + | 1.16592i | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | 1.65015 | + | 0.526309i | −0.700188 | + | 0.404254i | 1.00000 | 0.281268 | − | 2.98679i | − | 1.00000i | |||
131.7 | −0.500000 | − | 0.866025i | −1.21393 | − | 1.23547i | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | −0.462983 | + | 1.66903i | −1.10421 | + | 0.637517i | 1.00000 | −0.0527607 | + | 2.99954i | − | 1.00000i | |||
131.8 | −0.500000 | − | 0.866025i | −1.19434 | + | 1.25442i | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | 1.68352 | + | 0.407116i | −1.93804 | + | 1.11893i | 1.00000 | −0.147126 | − | 2.99639i | − | 1.00000i | |||
131.9 | −0.500000 | − | 0.866025i | −1.02646 | − | 1.39512i | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | −0.694980 | + | 1.58651i | −1.11114 | + | 0.641516i | 1.00000 | −0.892741 | + | 2.86409i | 1.00000i | ||||
131.10 | −0.500000 | − | 0.866025i | −0.805671 | + | 1.53326i | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | 1.73068 | − | 0.0689002i | −1.00951 | + | 0.582842i | 1.00000 | −1.70179 | − | 2.47061i | 1.00000i | ||||
131.11 | −0.500000 | − | 0.866025i | −0.234765 | − | 1.71607i | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | −1.36878 | + | 1.06135i | 3.20594 | − | 1.85095i | 1.00000 | −2.88977 | + | 0.805744i | 1.00000i | ||||
131.12 | −0.500000 | − | 0.866025i | −0.152357 | − | 1.72534i | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | −1.41801 | + | 0.994614i | 0.0947420 | − | 0.0546993i | 1.00000 | −2.95357 | + | 0.525735i | 1.00000i | ||||
131.13 | −0.500000 | − | 0.866025i | 0.0978520 | − | 1.72928i | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | −1.54653 | + | 0.779900i | 1.01491 | − | 0.585956i | 1.00000 | −2.98085 | − | 0.338428i | − | 1.00000i | |||
131.14 | −0.500000 | − | 0.866025i | 0.216395 | + | 1.71848i | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | 1.38005 | − | 1.04664i | 3.44565 | − | 1.98935i | 1.00000 | −2.90635 | + | 0.743740i | − | 1.00000i | |||
131.15 | −0.500000 | − | 0.866025i | 0.713195 | + | 1.57840i | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | 1.01034 | − | 1.40685i | −3.86969 | + | 2.23417i | 1.00000 | −1.98271 | + | 2.25142i | − | 1.00000i | |||
131.16 | −0.500000 | − | 0.866025i | 0.761656 | − | 1.55560i | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | −1.72801 | + | 0.118185i | −2.83014 | + | 1.63398i | 1.00000 | −1.83976 | − | 2.36966i | − | 1.00000i | |||
131.17 | −0.500000 | − | 0.866025i | 0.795729 | + | 1.53845i | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | 0.934468 | − | 1.45834i | 1.95421 | − | 1.12826i | 1.00000 | −1.73363 | + | 2.44837i | 1.00000i | ||||
131.18 | −0.500000 | − | 0.866025i | 1.07742 | − | 1.35616i | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | −1.71318 | − | 0.254992i | 2.99719 | − | 1.73043i | 1.00000 | −0.678339 | − | 2.92230i | 1.00000i | ||||
131.19 | −0.500000 | − | 0.866025i | 1.50274 | + | 0.861268i | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | −0.00548788 | − | 1.73204i | −1.26719 | + | 0.731611i | 1.00000 | 1.51643 | + | 2.58852i | 1.00000i | ||||
131.20 | −0.500000 | − | 0.866025i | 1.51330 | − | 0.842574i | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | −1.48634 | − | 0.889267i | 2.62958 | − | 1.51819i | 1.00000 | 1.58014 | − | 2.55013i | − | 1.00000i | |||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
99.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 990.2.t.a | ✓ | 48 |
3.b | odd | 2 | 1 | 2970.2.t.b | 48 | ||
9.c | even | 3 | 1 | 2970.2.t.a | 48 | ||
9.d | odd | 6 | 1 | 990.2.t.b | yes | 48 | |
11.b | odd | 2 | 1 | 990.2.t.b | yes | 48 | |
33.d | even | 2 | 1 | 2970.2.t.a | 48 | ||
99.g | even | 6 | 1 | inner | 990.2.t.a | ✓ | 48 |
99.h | odd | 6 | 1 | 2970.2.t.b | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
990.2.t.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
990.2.t.a | ✓ | 48 | 99.g | even | 6 | 1 | inner |
990.2.t.b | yes | 48 | 9.d | odd | 6 | 1 | |
990.2.t.b | yes | 48 | 11.b | odd | 2 | 1 | |
2970.2.t.a | 48 | 9.c | even | 3 | 1 | ||
2970.2.t.a | 48 | 33.d | even | 2 | 1 | ||
2970.2.t.b | 48 | 3.b | odd | 2 | 1 | ||
2970.2.t.b | 48 | 99.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{48} - 96 T_{7}^{46} + 5316 T_{7}^{44} + 870 T_{7}^{43} - 198414 T_{7}^{42} - 65058 T_{7}^{41} + \cdots + 406829660224 \)
acting on \(S_{2}^{\mathrm{new}}(990, [\chi])\).