Properties

Label 990.2.m.a
Level $990$
Weight $2$
Character orbit 990.m
Analytic conductor $7.905$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(307,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-8,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{8} q^{2} + \zeta_{8}^{2} q^{4} + (\zeta_{8}^{2} - 2) q^{5} + 4 \zeta_{8} q^{7} - \zeta_{8}^{3} q^{8} + ( - \zeta_{8}^{3} + 2 \zeta_{8}) q^{10} + (\zeta_{8}^{3} + \zeta_{8} + 3) q^{11} + 2 \zeta_{8}^{3} q^{13} + \cdots - 9 \zeta_{8}^{3} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} + 12 q^{11} - 4 q^{16} - 4 q^{20} + 4 q^{22} - 12 q^{23} + 12 q^{25} + 8 q^{26} + 8 q^{31} - 4 q^{37} + 24 q^{38} + 4 q^{47} - 12 q^{53} - 24 q^{55} + 16 q^{56} + 8 q^{58} + 12 q^{67} + 16 q^{70}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-\zeta_{8}^{2}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1
0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i 0 1.00000i −2.00000 1.00000i 0 2.82843 2.82843i 0.707107 + 0.707107i 0 2.12132 0.707107i
307.2 0.707107 0.707107i 0 1.00000i −2.00000 1.00000i 0 −2.82843 + 2.82843i −0.707107 0.707107i 0 −2.12132 + 0.707107i
703.1 −0.707107 0.707107i 0 1.00000i −2.00000 + 1.00000i 0 2.82843 + 2.82843i 0.707107 0.707107i 0 2.12132 + 0.707107i
703.2 0.707107 + 0.707107i 0 1.00000i −2.00000 + 1.00000i 0 −2.82843 2.82843i −0.707107 + 0.707107i 0 −2.12132 0.707107i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
11.b odd 2 1 inner
55.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 990.2.m.a 4
3.b odd 2 1 110.2.f.a 4
5.c odd 4 1 inner 990.2.m.a 4
11.b odd 2 1 inner 990.2.m.a 4
12.b even 2 1 880.2.bd.g 4
15.d odd 2 1 550.2.f.c 4
15.e even 4 1 110.2.f.a 4
15.e even 4 1 550.2.f.c 4
33.d even 2 1 110.2.f.a 4
55.e even 4 1 inner 990.2.m.a 4
60.l odd 4 1 880.2.bd.g 4
132.d odd 2 1 880.2.bd.g 4
165.d even 2 1 550.2.f.c 4
165.l odd 4 1 110.2.f.a 4
165.l odd 4 1 550.2.f.c 4
660.q even 4 1 880.2.bd.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.f.a 4 3.b odd 2 1
110.2.f.a 4 15.e even 4 1
110.2.f.a 4 33.d even 2 1
110.2.f.a 4 165.l odd 4 1
550.2.f.c 4 15.d odd 2 1
550.2.f.c 4 15.e even 4 1
550.2.f.c 4 165.d even 2 1
550.2.f.c 4 165.l odd 4 1
880.2.bd.g 4 12.b even 2 1
880.2.bd.g 4 60.l odd 4 1
880.2.bd.g 4 132.d odd 2 1
880.2.bd.g 4 660.q even 4 1
990.2.m.a 4 1.a even 1 1 trivial
990.2.m.a 4 5.c odd 4 1 inner
990.2.m.a 4 11.b odd 2 1 inner
990.2.m.a 4 55.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(990, [\chi])\):

\( T_{7}^{4} + 256 \) Copy content Toggle raw display
\( T_{13}^{4} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 4 T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 256 \) Copy content Toggle raw display
$11$ \( (T^{2} - 6 T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 16 \) Copy content Toggle raw display
$17$ \( T^{4} + 16 \) Copy content Toggle raw display
$19$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 6 T + 18)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$31$ \( (T - 2)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 256 \) Copy content Toggle raw display
$47$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 6 T + 18)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 200)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$71$ \( (T + 8)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 10000 \) Copy content Toggle raw display
$79$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 4096 \) Copy content Toggle raw display
$89$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 14 T + 98)^{2} \) Copy content Toggle raw display
show more
show less