L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−2 − i)5-s + (2.82 − 2.82i)7-s + (0.707 + 0.707i)8-s + (2.12 − 0.707i)10-s + (3 − 1.41i)11-s + (−1.41 − 1.41i)13-s + 4.00i·14-s − 1.00·16-s + (1.41 − 1.41i)17-s − 8.48·19-s + (−1.00 + 2.00i)20-s + (−1.12 + 3.12i)22-s + (−3 + 3i)23-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (−0.894 − 0.447i)5-s + (1.06 − 1.06i)7-s + (0.250 + 0.250i)8-s + (0.670 − 0.223i)10-s + (0.904 − 0.426i)11-s + (−0.392 − 0.392i)13-s + 1.06i·14-s − 0.250·16-s + (0.342 − 0.342i)17-s − 1.94·19-s + (−0.223 + 0.447i)20-s + (−0.239 + 0.665i)22-s + (−0.625 + 0.625i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.252 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.252 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.483431 - 0.625579i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.483431 - 0.625579i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2 + i)T \) |
| 11 | \( 1 + (-3 + 1.41i)T \) |
good | 7 | \( 1 + (-2.82 + 2.82i)T - 7iT^{2} \) |
| 13 | \( 1 + (1.41 + 1.41i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1.41 + 1.41i)T - 17iT^{2} \) |
| 19 | \( 1 + 8.48T + 19T^{2} \) |
| 23 | \( 1 + (3 - 3i)T - 23iT^{2} \) |
| 29 | \( 1 + 2.82T + 29T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 + (1 + i)T + 37iT^{2} \) |
| 41 | \( 1 + 8.48iT - 41T^{2} \) |
| 43 | \( 1 + (2.82 + 2.82i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1 - i)T + 47iT^{2} \) |
| 53 | \( 1 + (3 - 3i)T - 53iT^{2} \) |
| 59 | \( 1 + 10iT - 59T^{2} \) |
| 61 | \( 1 + 14.1iT - 61T^{2} \) |
| 67 | \( 1 + (-3 - 3i)T + 67iT^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 + (-7.07 - 7.07i)T + 73iT^{2} \) |
| 79 | \( 1 - 2.82T + 79T^{2} \) |
| 83 | \( 1 + (5.65 + 5.65i)T + 83iT^{2} \) |
| 89 | \( 1 - 6iT - 89T^{2} \) |
| 97 | \( 1 + (7 + 7i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.632187444787522422329821203491, −8.633806143381856581767802941450, −8.093184278999007215459047017437, −7.40749097854714316018817545637, −6.59744012675904812153380726912, −5.36502973345812545763763445032, −4.41312005889468698818284349999, −3.73405418666427563633014942726, −1.72553210939248857473373519835, −0.43844413472104638530493798216,
1.70370220137157879971421784018, 2.63491077602132279163787352291, 4.05294688970705792632627900964, 4.63894298676932104818617427139, 6.12266888172147421944000213131, 6.97774526383859681997628035302, 8.090319190563441111839385711761, 8.453261600830740120214614106838, 9.314268378269628627272409130033, 10.36588495649345980535170210679