Properties

Label 550.2.f.c
Level $550$
Weight $2$
Character orbit 550.f
Analytic conductor $4.392$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [550,2,Mod(43,550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(550, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("550.43"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,0,0,0,0,-12,-4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{8} q^{2} + (\zeta_{8}^{2} + 1) q^{3} + \zeta_{8}^{2} q^{4} + (\zeta_{8}^{3} + \zeta_{8}) q^{6} + 4 \zeta_{8} q^{7} + \zeta_{8}^{3} q^{8} - \zeta_{8}^{2} q^{9} + (\zeta_{8}^{3} + \zeta_{8} - 3) q^{11} + \cdots + ( - \zeta_{8}^{3} + 3 \zeta_{8}^{2} + \zeta_{8}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 12 q^{11} - 4 q^{12} - 4 q^{16} - 4 q^{22} - 12 q^{23} - 8 q^{26} + 16 q^{27} + 8 q^{31} - 12 q^{33} + 4 q^{36} + 4 q^{37} + 24 q^{38} - 16 q^{42} + 4 q^{47} - 4 q^{48} - 12 q^{53} - 16 q^{56}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(-\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1
−0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i 1.00000 + 1.00000i 1.00000i 0 1.41421i −2.82843 2.82843i 0.707107 0.707107i 1.00000i 0
43.2 0.707107 + 0.707107i 1.00000 + 1.00000i 1.00000i 0 1.41421i 2.82843 + 2.82843i −0.707107 + 0.707107i 1.00000i 0
307.1 −0.707107 + 0.707107i 1.00000 1.00000i 1.00000i 0 1.41421i −2.82843 + 2.82843i 0.707107 + 0.707107i 1.00000i 0
307.2 0.707107 0.707107i 1.00000 1.00000i 1.00000i 0 1.41421i 2.82843 2.82843i −0.707107 0.707107i 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
11.b odd 2 1 inner
55.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 550.2.f.c 4
5.b even 2 1 110.2.f.a 4
5.c odd 4 1 110.2.f.a 4
5.c odd 4 1 inner 550.2.f.c 4
11.b odd 2 1 inner 550.2.f.c 4
15.d odd 2 1 990.2.m.a 4
15.e even 4 1 990.2.m.a 4
20.d odd 2 1 880.2.bd.g 4
20.e even 4 1 880.2.bd.g 4
55.d odd 2 1 110.2.f.a 4
55.e even 4 1 110.2.f.a 4
55.e even 4 1 inner 550.2.f.c 4
165.d even 2 1 990.2.m.a 4
165.l odd 4 1 990.2.m.a 4
220.g even 2 1 880.2.bd.g 4
220.i odd 4 1 880.2.bd.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.f.a 4 5.b even 2 1
110.2.f.a 4 5.c odd 4 1
110.2.f.a 4 55.d odd 2 1
110.2.f.a 4 55.e even 4 1
550.2.f.c 4 1.a even 1 1 trivial
550.2.f.c 4 5.c odd 4 1 inner
550.2.f.c 4 11.b odd 2 1 inner
550.2.f.c 4 55.e even 4 1 inner
880.2.bd.g 4 20.d odd 2 1
880.2.bd.g 4 20.e even 4 1
880.2.bd.g 4 220.g even 2 1
880.2.bd.g 4 220.i odd 4 1
990.2.m.a 4 15.d odd 2 1
990.2.m.a 4 15.e even 4 1
990.2.m.a 4 165.d even 2 1
990.2.m.a 4 165.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(550, [\chi])\):

\( T_{3}^{2} - 2T_{3} + 2 \) Copy content Toggle raw display
\( T_{13}^{4} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 256 \) Copy content Toggle raw display
$11$ \( (T^{2} + 6 T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 16 \) Copy content Toggle raw display
$17$ \( T^{4} + 16 \) Copy content Toggle raw display
$19$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 6 T + 18)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$31$ \( (T - 2)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 256 \) Copy content Toggle raw display
$47$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 6 T + 18)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 200)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 6 T + 18)^{2} \) Copy content Toggle raw display
$71$ \( (T - 8)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 10000 \) Copy content Toggle raw display
$79$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 4096 \) Copy content Toggle raw display
$89$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 14 T + 98)^{2} \) Copy content Toggle raw display
show more
show less