Properties

Label 8-990e4-1.1-c1e4-0-12
Degree $8$
Conductor $960596010000$
Sign $1$
Analytic cond. $3905.25$
Root an. cond. $2.81161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·5-s + 12·11-s − 16-s − 12·23-s + 38·25-s + 8·31-s − 4·37-s + 4·47-s − 12·53-s − 96·55-s + 12·67-s − 32·71-s + 8·80-s − 28·97-s − 12·103-s − 4·113-s + 96·115-s + 86·121-s − 136·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 64·155-s + 157-s + ⋯
L(s)  = 1  − 3.57·5-s + 3.61·11-s − 1/4·16-s − 2.50·23-s + 38/5·25-s + 1.43·31-s − 0.657·37-s + 0.583·47-s − 1.64·53-s − 12.9·55-s + 1.46·67-s − 3.79·71-s + 0.894·80-s − 2.84·97-s − 1.18·103-s − 0.376·113-s + 8.95·115-s + 7.81·121-s − 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 5.14·155-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(3905.25\)
Root analytic conductor: \(2.81161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 11^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.320280109\)
\(L(\frac12)\) \(\approx\) \(1.320280109\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + T^{4} \)
3 \( 1 \)
5$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
good7$C_2^3$ \( 1 - 94 T^{4} + p^{4} T^{8} \)
13$C_2^3$ \( 1 + 146 T^{4} + p^{4} T^{8} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 16 T^{2} + p^{2} T^{4} )( 1 + 16 T^{2} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^3$ \( 1 + 1202 T^{4} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 78 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
73$C_2^3$ \( 1 - 8542 T^{4} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 + 150 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 3374 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 - 142 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.17316585485065091683042287211, −6.97774526383859681997628035302, −6.71543793406511065003360313468, −6.59744012675904812153380726912, −6.47257877501886304466447080332, −6.12266888172147421944000213131, −5.77699668224538847010032137586, −5.69360503010811950539088849650, −5.36502973345812545763763445032, −4.63894298676932104818617427139, −4.61527827181284085608972464514, −4.44162268365540586227008271725, −4.41312005889468698818284349999, −4.05294688970705792632627900964, −3.73405418666427563633014942726, −3.68696290817587620437344966118, −3.63239748162628774196544867617, −3.06639863200297920068083556676, −2.88857339225610694836002488647, −2.63491077602132279163787352291, −1.72553210939248857473373519835, −1.70370220137157879971421784018, −1.32902108039810949861228467399, −0.64270358445023962313141979619, −0.43844413472104638530493798216, 0.43844413472104638530493798216, 0.64270358445023962313141979619, 1.32902108039810949861228467399, 1.70370220137157879971421784018, 1.72553210939248857473373519835, 2.63491077602132279163787352291, 2.88857339225610694836002488647, 3.06639863200297920068083556676, 3.63239748162628774196544867617, 3.68696290817587620437344966118, 3.73405418666427563633014942726, 4.05294688970705792632627900964, 4.41312005889468698818284349999, 4.44162268365540586227008271725, 4.61527827181284085608972464514, 4.63894298676932104818617427139, 5.36502973345812545763763445032, 5.69360503010811950539088849650, 5.77699668224538847010032137586, 6.12266888172147421944000213131, 6.47257877501886304466447080332, 6.59744012675904812153380726912, 6.71543793406511065003360313468, 6.97774526383859681997628035302, 7.17316585485065091683042287211

Graph of the $Z$-function along the critical line