Properties

Label 990.2.ba.i.829.1
Level $990$
Weight $2$
Character 990.829
Analytic conductor $7.905$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(289,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.ba (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,8,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 829.1
Character \(\chi\) \(=\) 990.829
Dual form 990.2.ba.i.289.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.587785 + 0.809017i) q^{2} +(-0.309017 - 0.951057i) q^{4} +(-2.23339 - 0.109316i) q^{5} +(1.51700 - 0.492904i) q^{7} +(0.951057 + 0.309017i) q^{8} +(1.40119 - 1.74260i) q^{10} +(-3.31152 + 0.183948i) q^{11} +(-1.81548 + 2.49879i) q^{13} +(-0.492904 + 1.51700i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(4.22144 + 5.81031i) q^{17} +(2.42920 - 7.47630i) q^{19} +(0.586191 + 2.15786i) q^{20} +(1.79765 - 2.78720i) q^{22} -3.38697i q^{23} +(4.97610 + 0.488292i) q^{25} +(-0.954454 - 2.93751i) q^{26} +(-0.937558 - 1.29044i) q^{28} +(-2.17853 - 6.70484i) q^{29} +(-3.10073 - 2.25281i) q^{31} -1.00000i q^{32} -7.18194 q^{34} +(-3.44194 + 0.935015i) q^{35} +(-0.108362 + 0.0352088i) q^{37} +(4.62061 + 6.35972i) q^{38} +(-2.09030 - 0.794123i) q^{40} +(3.35707 - 10.3320i) q^{41} -5.27497i q^{43} +(1.19826 + 3.09260i) q^{44} +(2.74012 + 1.99081i) q^{46} +(-7.49596 - 2.43559i) q^{47} +(-3.60478 + 2.61903i) q^{49} +(-3.31991 + 3.73874i) q^{50} +(2.93751 + 0.954454i) q^{52} +(7.69164 - 10.5866i) q^{53} +(7.41604 - 0.0488253i) q^{55} +1.59507 q^{56} +(6.70484 + 2.17853i) q^{58} +(0.837725 + 2.57825i) q^{59} +(-2.80239 + 2.03606i) q^{61} +(3.64513 - 1.18437i) q^{62} +(0.809017 + 0.587785i) q^{64} +(4.32784 - 5.38233i) q^{65} +0.846682i q^{67} +(4.22144 - 5.81031i) q^{68} +(1.26668 - 3.33418i) q^{70} +(11.9759 - 8.70102i) q^{71} +(11.9832 - 3.89357i) q^{73} +(0.0352088 - 0.108362i) q^{74} -7.86105 q^{76} +(-4.93291 + 1.91131i) q^{77} +(2.85840 + 2.07675i) q^{79} +(1.87111 - 1.22432i) q^{80} +(6.38552 + 8.78891i) q^{82} +(-4.04681 - 5.56995i) q^{83} +(-8.79298 - 13.4382i) q^{85} +(4.26754 + 3.10055i) q^{86} +(-3.20629 - 0.848371i) q^{88} -11.0410 q^{89} +(-1.52242 + 4.68553i) q^{91} +(-3.22120 + 1.04663i) q^{92} +(6.37645 - 4.63276i) q^{94} +(-6.24263 + 16.4320i) q^{95} +(-0.957769 + 1.31826i) q^{97} -4.45575i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{4} + 2 q^{5} + 4 q^{10} - 10 q^{14} - 8 q^{16} + 20 q^{19} - 2 q^{20} + 4 q^{25} + 2 q^{26} - 2 q^{29} - 24 q^{31} - 28 q^{34} - 44 q^{35} - 4 q^{40} + 34 q^{41} + 20 q^{44} - 38 q^{46} + 14 q^{49}+ \cdots + 60 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.587785 + 0.809017i −0.415627 + 0.572061i
\(3\) 0 0
\(4\) −0.309017 0.951057i −0.154508 0.475528i
\(5\) −2.23339 0.109316i −0.998804 0.0488877i
\(6\) 0 0
\(7\) 1.51700 0.492904i 0.573373 0.186300i −0.00795682 0.999968i \(-0.502533\pi\)
0.581329 + 0.813668i \(0.302533\pi\)
\(8\) 0.951057 + 0.309017i 0.336249 + 0.109254i
\(9\) 0 0
\(10\) 1.40119 1.74260i 0.443097 0.551058i
\(11\) −3.31152 + 0.183948i −0.998461 + 0.0554623i
\(12\) 0 0
\(13\) −1.81548 + 2.49879i −0.503523 + 0.693040i −0.982810 0.184618i \(-0.940895\pi\)
0.479287 + 0.877658i \(0.340895\pi\)
\(14\) −0.492904 + 1.51700i −0.131734 + 0.405436i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) 4.22144 + 5.81031i 1.02385 + 1.40921i 0.909469 + 0.415771i \(0.136488\pi\)
0.114380 + 0.993437i \(0.463512\pi\)
\(18\) 0 0
\(19\) 2.42920 7.47630i 0.557296 1.71518i −0.132506 0.991182i \(-0.542302\pi\)
0.689802 0.723998i \(-0.257698\pi\)
\(20\) 0.586191 + 2.15786i 0.131076 + 0.482513i
\(21\) 0 0
\(22\) 1.79765 2.78720i 0.383259 0.594233i
\(23\) 3.38697i 0.706232i −0.935579 0.353116i \(-0.885122\pi\)
0.935579 0.353116i \(-0.114878\pi\)
\(24\) 0 0
\(25\) 4.97610 + 0.488292i 0.995220 + 0.0976584i
\(26\) −0.954454 2.93751i −0.187184 0.576093i
\(27\) 0 0
\(28\) −0.937558 1.29044i −0.177182 0.243870i
\(29\) −2.17853 6.70484i −0.404544 1.24506i −0.921276 0.388910i \(-0.872852\pi\)
0.516732 0.856147i \(-0.327148\pi\)
\(30\) 0 0
\(31\) −3.10073 2.25281i −0.556908 0.404617i 0.273418 0.961895i \(-0.411846\pi\)
−0.830326 + 0.557278i \(0.811846\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −7.18194 −1.23169
\(35\) −3.44194 + 0.935015i −0.581795 + 0.158046i
\(36\) 0 0
\(37\) −0.108362 + 0.0352088i −0.0178145 + 0.00578829i −0.317911 0.948121i \(-0.602981\pi\)
0.300096 + 0.953909i \(0.402981\pi\)
\(38\) 4.62061 + 6.35972i 0.749561 + 1.03168i
\(39\) 0 0
\(40\) −2.09030 0.794123i −0.330506 0.125562i
\(41\) 3.35707 10.3320i 0.524286 1.61359i −0.241439 0.970416i \(-0.577619\pi\)
0.765724 0.643169i \(-0.222381\pi\)
\(42\) 0 0
\(43\) 5.27497i 0.804426i −0.915546 0.402213i \(-0.868241\pi\)
0.915546 0.402213i \(-0.131759\pi\)
\(44\) 1.19826 + 3.09260i 0.180645 + 0.466227i
\(45\) 0 0
\(46\) 2.74012 + 1.99081i 0.404008 + 0.293529i
\(47\) −7.49596 2.43559i −1.09340 0.355267i −0.293840 0.955855i \(-0.594933\pi\)
−0.799559 + 0.600588i \(0.794933\pi\)
\(48\) 0 0
\(49\) −3.60478 + 2.61903i −0.514969 + 0.374147i
\(50\) −3.31991 + 3.73874i −0.469507 + 0.528737i
\(51\) 0 0
\(52\) 2.93751 + 0.954454i 0.407359 + 0.132359i
\(53\) 7.69164 10.5866i 1.05653 1.45419i 0.173518 0.984831i \(-0.444487\pi\)
0.883010 0.469354i \(-0.155513\pi\)
\(54\) 0 0
\(55\) 7.41604 0.0488253i 0.999978 0.00658360i
\(56\) 1.59507 0.213150
\(57\) 0 0
\(58\) 6.70484 + 2.17853i 0.880388 + 0.286056i
\(59\) 0.837725 + 2.57825i 0.109063 + 0.335660i 0.990662 0.136338i \(-0.0435332\pi\)
−0.881600 + 0.471997i \(0.843533\pi\)
\(60\) 0 0
\(61\) −2.80239 + 2.03606i −0.358809 + 0.260690i −0.752555 0.658529i \(-0.771179\pi\)
0.393746 + 0.919219i \(0.371179\pi\)
\(62\) 3.64513 1.18437i 0.462932 0.150416i
\(63\) 0 0
\(64\) 0.809017 + 0.587785i 0.101127 + 0.0734732i
\(65\) 4.32784 5.38233i 0.536802 0.667596i
\(66\) 0 0
\(67\) 0.846682i 0.103439i 0.998662 + 0.0517193i \(0.0164701\pi\)
−0.998662 + 0.0517193i \(0.983530\pi\)
\(68\) 4.22144 5.81031i 0.511925 0.704604i
\(69\) 0 0
\(70\) 1.26668 3.33418i 0.151397 0.398511i
\(71\) 11.9759 8.70102i 1.42128 1.03262i 0.429722 0.902961i \(-0.358612\pi\)
0.991559 0.129659i \(-0.0413884\pi\)
\(72\) 0 0
\(73\) 11.9832 3.89357i 1.40252 0.455708i 0.492518 0.870302i \(-0.336077\pi\)
0.910006 + 0.414595i \(0.136077\pi\)
\(74\) 0.0352088 0.108362i 0.00409294 0.0125968i
\(75\) 0 0
\(76\) −7.86105 −0.901724
\(77\) −4.93291 + 1.91131i −0.562157 + 0.217814i
\(78\) 0 0
\(79\) 2.85840 + 2.07675i 0.321595 + 0.233652i 0.736856 0.676050i \(-0.236310\pi\)
−0.415261 + 0.909702i \(0.636310\pi\)
\(80\) 1.87111 1.22432i 0.209196 0.136883i
\(81\) 0 0
\(82\) 6.38552 + 8.78891i 0.705163 + 0.970573i
\(83\) −4.04681 5.56995i −0.444195 0.611382i 0.526943 0.849901i \(-0.323338\pi\)
−0.971138 + 0.238519i \(0.923338\pi\)
\(84\) 0 0
\(85\) −8.79298 13.4382i −0.953732 1.45758i
\(86\) 4.26754 + 3.10055i 0.460181 + 0.334341i
\(87\) 0 0
\(88\) −3.20629 0.848371i −0.341791 0.0904367i
\(89\) −11.0410 −1.17035 −0.585174 0.810907i \(-0.698974\pi\)
−0.585174 + 0.810907i \(0.698974\pi\)
\(90\) 0 0
\(91\) −1.52242 + 4.68553i −0.159593 + 0.491177i
\(92\) −3.22120 + 1.04663i −0.335833 + 0.109119i
\(93\) 0 0
\(94\) 6.37645 4.63276i 0.657680 0.477833i
\(95\) −6.24263 + 16.4320i −0.640481 + 1.68588i
\(96\) 0 0
\(97\) −0.957769 + 1.31826i −0.0972467 + 0.133849i −0.854867 0.518846i \(-0.826362\pi\)
0.757621 + 0.652695i \(0.226362\pi\)
\(98\) 4.45575i 0.450099i
\(99\) 0 0
\(100\) −1.07331 4.88344i −0.107331 0.488344i
\(101\) 3.24534 + 2.35788i 0.322923 + 0.234618i 0.737422 0.675432i \(-0.236043\pi\)
−0.414498 + 0.910050i \(0.636043\pi\)
\(102\) 0 0
\(103\) 2.70073 0.877521i 0.266111 0.0864647i −0.172922 0.984935i \(-0.555321\pi\)
0.439033 + 0.898471i \(0.355321\pi\)
\(104\) −2.49879 + 1.81548i −0.245027 + 0.178022i
\(105\) 0 0
\(106\) 4.04373 + 12.4453i 0.392762 + 1.20880i
\(107\) 9.64652 + 3.13435i 0.932565 + 0.303009i 0.735611 0.677404i \(-0.236895\pi\)
0.196954 + 0.980413i \(0.436895\pi\)
\(108\) 0 0
\(109\) −16.6127 −1.59121 −0.795606 0.605815i \(-0.792847\pi\)
−0.795606 + 0.605815i \(0.792847\pi\)
\(110\) −4.31954 + 6.02840i −0.411852 + 0.574785i
\(111\) 0 0
\(112\) −0.937558 + 1.29044i −0.0885909 + 0.121935i
\(113\) 3.87304 + 1.25843i 0.364345 + 0.118383i 0.485468 0.874255i \(-0.338649\pi\)
−0.121123 + 0.992638i \(0.538649\pi\)
\(114\) 0 0
\(115\) −0.370251 + 7.56444i −0.0345261 + 0.705388i
\(116\) −5.70348 + 4.14382i −0.529554 + 0.384744i
\(117\) 0 0
\(118\) −2.57825 0.837725i −0.237347 0.0771188i
\(119\) 9.26785 + 6.73349i 0.849583 + 0.617258i
\(120\) 0 0
\(121\) 10.9323 1.21829i 0.993848 0.110754i
\(122\) 3.46394i 0.313611i
\(123\) 0 0
\(124\) −1.18437 + 3.64513i −0.106360 + 0.327342i
\(125\) −11.0602 1.63452i −0.989256 0.146196i
\(126\) 0 0
\(127\) −4.05022 5.57465i −0.359399 0.494670i 0.590582 0.806978i \(-0.298898\pi\)
−0.949981 + 0.312307i \(0.898898\pi\)
\(128\) −0.951057 + 0.309017i −0.0840623 + 0.0273135i
\(129\) 0 0
\(130\) 1.81056 + 6.66495i 0.158796 + 0.584555i
\(131\) 1.65497 0.144596 0.0722979 0.997383i \(-0.476967\pi\)
0.0722979 + 0.997383i \(0.476967\pi\)
\(132\) 0 0
\(133\) 12.5389i 1.08726i
\(134\) −0.684980 0.497667i −0.0591733 0.0429919i
\(135\) 0 0
\(136\) 2.21934 + 6.83043i 0.190307 + 0.585705i
\(137\) 5.44871 + 7.49951i 0.465515 + 0.640726i 0.975641 0.219373i \(-0.0704012\pi\)
−0.510126 + 0.860100i \(0.670401\pi\)
\(138\) 0 0
\(139\) −1.43113 4.40457i −0.121387 0.373591i 0.871839 0.489793i \(-0.162928\pi\)
−0.993226 + 0.116203i \(0.962928\pi\)
\(140\) 1.95287 + 2.98455i 0.165048 + 0.252240i
\(141\) 0 0
\(142\) 14.8031i 1.24224i
\(143\) 5.55235 8.60876i 0.464311 0.719900i
\(144\) 0 0
\(145\) 4.13258 + 15.2127i 0.343192 + 1.26335i
\(146\) −3.89357 + 11.9832i −0.322234 + 0.991734i
\(147\) 0 0
\(148\) 0.0669711 + 0.0921778i 0.00550499 + 0.00757697i
\(149\) −4.57146 + 3.32136i −0.374508 + 0.272096i −0.759078 0.651000i \(-0.774350\pi\)
0.384570 + 0.923096i \(0.374350\pi\)
\(150\) 0 0
\(151\) 0.453563 1.39592i 0.0369104 0.113599i −0.930904 0.365265i \(-0.880978\pi\)
0.967814 + 0.251666i \(0.0809785\pi\)
\(152\) 4.62061 6.35972i 0.374781 0.515841i
\(153\) 0 0
\(154\) 1.35321 5.11425i 0.109045 0.412118i
\(155\) 6.67888 + 5.37038i 0.536461 + 0.431359i
\(156\) 0 0
\(157\) −10.6849 3.47175i −0.852752 0.277076i −0.150154 0.988663i \(-0.547977\pi\)
−0.702598 + 0.711587i \(0.747977\pi\)
\(158\) −3.36024 + 1.09181i −0.267327 + 0.0868597i
\(159\) 0 0
\(160\) −0.109316 + 2.23339i −0.00864220 + 0.176565i
\(161\) −1.66945 5.13804i −0.131571 0.404934i
\(162\) 0 0
\(163\) −4.47958 + 6.16561i −0.350868 + 0.482928i −0.947576 0.319530i \(-0.896475\pi\)
0.596708 + 0.802458i \(0.296475\pi\)
\(164\) −10.8637 −0.848312
\(165\) 0 0
\(166\) 6.88484 0.534367
\(167\) −4.88691 + 6.72626i −0.378161 + 0.520494i −0.955096 0.296296i \(-0.904248\pi\)
0.576935 + 0.816790i \(0.304248\pi\)
\(168\) 0 0
\(169\) 1.06922 + 3.29072i 0.0822477 + 0.253132i
\(170\) 16.0401 + 0.785102i 1.23022 + 0.0602146i
\(171\) 0 0
\(172\) −5.01680 + 1.63006i −0.382527 + 0.124291i
\(173\) 7.44270 + 2.41828i 0.565858 + 0.183858i 0.577955 0.816069i \(-0.303851\pi\)
−0.0120975 + 0.999927i \(0.503851\pi\)
\(174\) 0 0
\(175\) 7.78943 1.71200i 0.588826 0.129415i
\(176\) 2.57095 2.09528i 0.193793 0.157938i
\(177\) 0 0
\(178\) 6.48977 8.93240i 0.486429 0.669511i
\(179\) 5.78044 17.7904i 0.432050 1.32971i −0.464029 0.885820i \(-0.653597\pi\)
0.896079 0.443894i \(-0.146403\pi\)
\(180\) 0 0
\(181\) 3.59193 2.60969i 0.266986 0.193977i −0.446235 0.894916i \(-0.647235\pi\)
0.713221 + 0.700939i \(0.247235\pi\)
\(182\) −2.89582 3.98575i −0.214652 0.295443i
\(183\) 0 0
\(184\) 1.04663 3.22120i 0.0771587 0.237470i
\(185\) 0.245863 0.0667895i 0.0180762 0.00491046i
\(186\) 0 0
\(187\) −15.0482 18.4644i −1.10043 1.35025i
\(188\) 7.88172i 0.574834i
\(189\) 0 0
\(190\) −9.62442 14.7089i −0.698229 1.06709i
\(191\) −3.19243 9.82529i −0.230996 0.710933i −0.997627 0.0688452i \(-0.978069\pi\)
0.766631 0.642088i \(-0.221931\pi\)
\(192\) 0 0
\(193\) −1.89861 2.61321i −0.136665 0.188103i 0.735199 0.677851i \(-0.237089\pi\)
−0.871864 + 0.489748i \(0.837089\pi\)
\(194\) −0.503529 1.54970i −0.0361513 0.111262i
\(195\) 0 0
\(196\) 3.60478 + 2.61903i 0.257484 + 0.187073i
\(197\) 3.05335i 0.217542i 0.994067 + 0.108771i \(0.0346915\pi\)
−0.994067 + 0.108771i \(0.965308\pi\)
\(198\) 0 0
\(199\) 3.42982 0.243133 0.121567 0.992583i \(-0.461208\pi\)
0.121567 + 0.992583i \(0.461208\pi\)
\(200\) 4.58166 + 2.00209i 0.323972 + 0.141569i
\(201\) 0 0
\(202\) −3.81513 + 1.23961i −0.268431 + 0.0872186i
\(203\) −6.60968 9.09744i −0.463908 0.638515i
\(204\) 0 0
\(205\) −8.62710 + 22.7084i −0.602543 + 1.58602i
\(206\) −0.877521 + 2.70073i −0.0611398 + 0.188169i
\(207\) 0 0
\(208\) 3.08868i 0.214161i
\(209\) −6.66908 + 25.2048i −0.461310 + 1.74345i
\(210\) 0 0
\(211\) −16.9759 12.3337i −1.16867 0.849089i −0.177821 0.984063i \(-0.556905\pi\)
−0.990849 + 0.134974i \(0.956905\pi\)
\(212\) −12.4453 4.04373i −0.854749 0.277725i
\(213\) 0 0
\(214\) −8.20582 + 5.96188i −0.560939 + 0.407546i
\(215\) −0.576640 + 11.7811i −0.0393265 + 0.803464i
\(216\) 0 0
\(217\) −5.81423 1.88916i −0.394696 0.128244i
\(218\) 9.76472 13.4400i 0.661350 0.910271i
\(219\) 0 0
\(220\) −2.33812 7.03798i −0.157636 0.474501i
\(221\) −22.1827 −1.49217
\(222\) 0 0
\(223\) 11.7590 + 3.82072i 0.787439 + 0.255854i 0.675013 0.737806i \(-0.264138\pi\)
0.112426 + 0.993660i \(0.464138\pi\)
\(224\) −0.492904 1.51700i −0.0329335 0.101359i
\(225\) 0 0
\(226\) −3.29461 + 2.39367i −0.219154 + 0.159225i
\(227\) −21.0624 + 6.84360i −1.39796 + 0.454226i −0.908532 0.417816i \(-0.862796\pi\)
−0.489432 + 0.872042i \(0.662796\pi\)
\(228\) 0 0
\(229\) 1.99941 + 1.45266i 0.132125 + 0.0959944i 0.651885 0.758318i \(-0.273979\pi\)
−0.519760 + 0.854312i \(0.673979\pi\)
\(230\) −5.90213 4.74581i −0.389175 0.312929i
\(231\) 0 0
\(232\) 7.04988i 0.462848i
\(233\) −16.6677 + 22.9411i −1.09193 + 1.50292i −0.246273 + 0.969200i \(0.579206\pi\)
−0.845662 + 0.533719i \(0.820794\pi\)
\(234\) 0 0
\(235\) 16.4752 + 6.25905i 1.07472 + 0.408296i
\(236\) 2.19319 1.59345i 0.142765 0.103725i
\(237\) 0 0
\(238\) −10.8950 + 3.54000i −0.706219 + 0.229464i
\(239\) −2.51287 + 7.73381i −0.162544 + 0.500259i −0.998847 0.0480089i \(-0.984712\pi\)
0.836303 + 0.548268i \(0.184712\pi\)
\(240\) 0 0
\(241\) 3.13125 0.201702 0.100851 0.994902i \(-0.467843\pi\)
0.100851 + 0.994902i \(0.467843\pi\)
\(242\) −5.44024 + 9.56053i −0.349712 + 0.614574i
\(243\) 0 0
\(244\) 2.80239 + 2.03606i 0.179405 + 0.130345i
\(245\) 8.33720 5.45526i 0.532644 0.348524i
\(246\) 0 0
\(247\) 14.2716 + 19.6431i 0.908078 + 1.24986i
\(248\) −2.25281 3.10073i −0.143054 0.196897i
\(249\) 0 0
\(250\) 7.82338 7.98716i 0.494794 0.505152i
\(251\) 10.1301 + 7.35992i 0.639404 + 0.464554i 0.859645 0.510891i \(-0.170684\pi\)
−0.220241 + 0.975445i \(0.570684\pi\)
\(252\) 0 0
\(253\) 0.623026 + 11.2160i 0.0391693 + 0.705145i
\(254\) 6.89065 0.432358
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 3.49308 1.13497i 0.217892 0.0707974i −0.198037 0.980195i \(-0.563457\pi\)
0.415929 + 0.909397i \(0.363457\pi\)
\(258\) 0 0
\(259\) −0.147030 + 0.106824i −0.00913600 + 0.00663770i
\(260\) −6.45627 2.45279i −0.400401 0.152116i
\(261\) 0 0
\(262\) −0.972769 + 1.33890i −0.0600979 + 0.0827176i
\(263\) 18.0696i 1.11422i −0.830438 0.557111i \(-0.811910\pi\)
0.830438 0.557111i \(-0.188090\pi\)
\(264\) 0 0
\(265\) −18.3357 + 22.8033i −1.12636 + 1.40080i
\(266\) 10.1442 + 7.37019i 0.621981 + 0.451895i
\(267\) 0 0
\(268\) 0.805243 0.261639i 0.0491880 0.0159822i
\(269\) 16.6144 12.0711i 1.01300 0.735985i 0.0481615 0.998840i \(-0.484664\pi\)
0.964836 + 0.262854i \(0.0846638\pi\)
\(270\) 0 0
\(271\) −2.48430 7.64590i −0.150911 0.464455i 0.846813 0.531891i \(-0.178518\pi\)
−0.997724 + 0.0674356i \(0.978518\pi\)
\(272\) −6.83043 2.21934i −0.414156 0.134567i
\(273\) 0 0
\(274\) −9.26991 −0.560015
\(275\) −16.5683 0.701647i −0.999104 0.0423109i
\(276\) 0 0
\(277\) −13.5594 + 18.6629i −0.814707 + 1.12135i 0.175873 + 0.984413i \(0.443725\pi\)
−0.990580 + 0.136935i \(0.956275\pi\)
\(278\) 4.40457 + 1.43113i 0.264168 + 0.0858335i
\(279\) 0 0
\(280\) −3.56242 0.174367i −0.212895 0.0104204i
\(281\) −12.6377 + 9.18182i −0.753902 + 0.547742i −0.897034 0.441962i \(-0.854283\pi\)
0.143132 + 0.989704i \(0.454283\pi\)
\(282\) 0 0
\(283\) −11.1248 3.61468i −0.661303 0.214870i −0.0409115 0.999163i \(-0.513026\pi\)
−0.620391 + 0.784293i \(0.713026\pi\)
\(284\) −11.9759 8.70102i −0.710640 0.516310i
\(285\) 0 0
\(286\) 3.70104 + 9.55204i 0.218847 + 0.564824i
\(287\) 17.3283i 1.02286i
\(288\) 0 0
\(289\) −10.6859 + 32.8878i −0.628582 + 1.93458i
\(290\) −14.7364 5.59847i −0.865351 0.328754i
\(291\) 0 0
\(292\) −7.40601 10.1935i −0.433404 0.596529i
\(293\) −15.4572 + 5.02234i −0.903018 + 0.293408i −0.723482 0.690343i \(-0.757460\pi\)
−0.179536 + 0.983751i \(0.557460\pi\)
\(294\) 0 0
\(295\) −1.58913 5.84983i −0.0925225 0.340590i
\(296\) −0.113938 −0.00662252
\(297\) 0 0
\(298\) 5.65063i 0.327332i
\(299\) 8.46334 + 6.14898i 0.489448 + 0.355605i
\(300\) 0 0
\(301\) −2.60005 8.00214i −0.149865 0.461236i
\(302\) 0.862727 + 1.18744i 0.0496444 + 0.0683296i
\(303\) 0 0
\(304\) 2.42920 + 7.47630i 0.139324 + 0.428795i
\(305\) 6.48141 4.24097i 0.371125 0.242837i
\(306\) 0 0
\(307\) 21.8451i 1.24676i −0.781917 0.623382i \(-0.785758\pi\)
0.781917 0.623382i \(-0.214242\pi\)
\(308\) 3.34212 + 4.10085i 0.190435 + 0.233668i
\(309\) 0 0
\(310\) −8.27048 + 2.24670i −0.469732 + 0.127604i
\(311\) −6.79652 + 20.9175i −0.385395 + 1.18613i 0.550797 + 0.834639i \(0.314324\pi\)
−0.936193 + 0.351486i \(0.885676\pi\)
\(312\) 0 0
\(313\) 4.45719 + 6.13479i 0.251935 + 0.346759i 0.916188 0.400749i \(-0.131250\pi\)
−0.664253 + 0.747508i \(0.731250\pi\)
\(314\) 9.08916 6.60366i 0.512931 0.372666i
\(315\) 0 0
\(316\) 1.09181 3.36024i 0.0614191 0.189029i
\(317\) −5.67596 + 7.81229i −0.318794 + 0.438782i −0.938098 0.346369i \(-0.887415\pi\)
0.619305 + 0.785151i \(0.287415\pi\)
\(318\) 0 0
\(319\) 8.44760 + 21.8025i 0.472975 + 1.22070i
\(320\) −1.74260 1.40119i −0.0974143 0.0783292i
\(321\) 0 0
\(322\) 5.13804 + 1.66945i 0.286332 + 0.0930348i
\(323\) 53.6943 17.4463i 2.98763 0.970741i
\(324\) 0 0
\(325\) −10.2541 + 11.5478i −0.568798 + 0.640554i
\(326\) −2.35505 7.24811i −0.130434 0.401436i
\(327\) 0 0
\(328\) 6.38552 8.78891i 0.352581 0.485287i
\(329\) −12.5719 −0.693111
\(330\) 0 0
\(331\) 31.5303 1.73306 0.866531 0.499123i \(-0.166345\pi\)
0.866531 + 0.499123i \(0.166345\pi\)
\(332\) −4.04681 + 5.56995i −0.222097 + 0.305691i
\(333\) 0 0
\(334\) −2.56920 7.90719i −0.140581 0.432662i
\(335\) 0.0925560 1.89097i 0.00505688 0.103315i
\(336\) 0 0
\(337\) 14.0752 4.57330i 0.766723 0.249123i 0.100561 0.994931i \(-0.467936\pi\)
0.666161 + 0.745808i \(0.267936\pi\)
\(338\) −3.29072 1.06922i −0.178992 0.0581579i
\(339\) 0 0
\(340\) −10.0633 + 12.5152i −0.545759 + 0.678735i
\(341\) 10.6825 + 6.88986i 0.578491 + 0.373107i
\(342\) 0 0
\(343\) −10.7404 + 14.7829i −0.579929 + 0.798204i
\(344\) 1.63006 5.01680i 0.0878867 0.270488i
\(345\) 0 0
\(346\) −6.33114 + 4.59984i −0.340364 + 0.247289i
\(347\) 1.72561 + 2.37509i 0.0926354 + 0.127502i 0.852819 0.522207i \(-0.174891\pi\)
−0.760184 + 0.649708i \(0.774891\pi\)
\(348\) 0 0
\(349\) 4.44198 13.6710i 0.237774 0.731792i −0.758968 0.651128i \(-0.774296\pi\)
0.996741 0.0806635i \(-0.0257039\pi\)
\(350\) −3.19348 + 7.30807i −0.170699 + 0.390633i
\(351\) 0 0
\(352\) 0.183948 + 3.31152i 0.00980445 + 0.176505i
\(353\) 27.8075i 1.48005i −0.672582 0.740023i \(-0.734815\pi\)
0.672582 0.740023i \(-0.265185\pi\)
\(354\) 0 0
\(355\) −27.6981 + 18.1236i −1.47006 + 0.961903i
\(356\) 3.41187 + 10.5007i 0.180829 + 0.556534i
\(357\) 0 0
\(358\) 10.9950 + 15.1334i 0.581106 + 0.799824i
\(359\) −0.318387 0.979893i −0.0168038 0.0517168i 0.942303 0.334761i \(-0.108656\pi\)
−0.959107 + 0.283044i \(0.908656\pi\)
\(360\) 0 0
\(361\) −34.6227 25.1549i −1.82225 1.32394i
\(362\) 4.43987i 0.233355i
\(363\) 0 0
\(364\) 4.92666 0.258227
\(365\) −27.1888 + 7.38592i −1.42313 + 0.386597i
\(366\) 0 0
\(367\) 1.44410 0.469215i 0.0753812 0.0244928i −0.271084 0.962556i \(-0.587382\pi\)
0.346465 + 0.938063i \(0.387382\pi\)
\(368\) 1.99081 + 2.74012i 0.103778 + 0.142839i
\(369\) 0 0
\(370\) −0.0904808 + 0.238165i −0.00470387 + 0.0123816i
\(371\) 6.45003 19.8512i 0.334869 1.03062i
\(372\) 0 0
\(373\) 3.44516i 0.178384i −0.996014 0.0891918i \(-0.971572\pi\)
0.996014 0.0891918i \(-0.0284284\pi\)
\(374\) 23.7831 1.32110i 1.22980 0.0683126i
\(375\) 0 0
\(376\) −6.37645 4.63276i −0.328840 0.238916i
\(377\) 20.7091 + 6.72879i 1.06657 + 0.346550i
\(378\) 0 0
\(379\) 12.5810 9.14067i 0.646245 0.469524i −0.215745 0.976450i \(-0.569218\pi\)
0.861990 + 0.506925i \(0.169218\pi\)
\(380\) 17.5568 + 0.859339i 0.900646 + 0.0440832i
\(381\) 0 0
\(382\) 9.82529 + 3.19243i 0.502705 + 0.163339i
\(383\) 9.21991 12.6901i 0.471115 0.648435i −0.505652 0.862738i \(-0.668748\pi\)
0.976767 + 0.214303i \(0.0687480\pi\)
\(384\) 0 0
\(385\) 11.2261 3.72946i 0.572134 0.190071i
\(386\) 3.23010 0.164408
\(387\) 0 0
\(388\) 1.54970 + 0.503529i 0.0786742 + 0.0255628i
\(389\) −8.79657 27.0731i −0.446004 1.37266i −0.881379 0.472410i \(-0.843384\pi\)
0.435375 0.900249i \(-0.356616\pi\)
\(390\) 0 0
\(391\) 19.6794 14.2979i 0.995228 0.723076i
\(392\) −4.23767 + 1.37690i −0.214035 + 0.0695441i
\(393\) 0 0
\(394\) −2.47021 1.79471i −0.124447 0.0904163i
\(395\) −6.15690 4.95066i −0.309787 0.249095i
\(396\) 0 0
\(397\) 13.8905i 0.697143i 0.937282 + 0.348572i \(0.113333\pi\)
−0.937282 + 0.348572i \(0.886667\pi\)
\(398\) −2.01600 + 2.77478i −0.101053 + 0.139087i
\(399\) 0 0
\(400\) −4.31276 + 2.52984i −0.215638 + 0.126492i
\(401\) −13.4104 + 9.74323i −0.669684 + 0.486554i −0.869919 0.493194i \(-0.835829\pi\)
0.200236 + 0.979748i \(0.435829\pi\)
\(402\) 0 0
\(403\) 11.2586 3.65815i 0.560832 0.182225i
\(404\) 1.23961 3.81513i 0.0616729 0.189810i
\(405\) 0 0
\(406\) 11.2451 0.558083
\(407\) 0.352365 0.136528i 0.0174661 0.00676742i
\(408\) 0 0
\(409\) −4.31694 3.13644i −0.213459 0.155087i 0.475918 0.879489i \(-0.342116\pi\)
−0.689377 + 0.724403i \(0.742116\pi\)
\(410\) −13.3006 20.3271i −0.656870 1.00389i
\(411\) 0 0
\(412\) −1.66914 2.29738i −0.0822328 0.113184i
\(413\) 2.54166 + 3.49829i 0.125067 + 0.172140i
\(414\) 0 0
\(415\) 8.42923 + 12.8823i 0.413775 + 0.632366i
\(416\) 2.49879 + 1.81548i 0.122513 + 0.0890112i
\(417\) 0 0
\(418\) −16.4711 20.2104i −0.805627 0.988522i
\(419\) 36.5583 1.78599 0.892994 0.450068i \(-0.148600\pi\)
0.892994 + 0.450068i \(0.148600\pi\)
\(420\) 0 0
\(421\) 11.3452 34.9170i 0.552933 1.70175i −0.148409 0.988926i \(-0.547415\pi\)
0.701341 0.712826i \(-0.252585\pi\)
\(422\) 19.9564 6.48423i 0.971462 0.315647i
\(423\) 0 0
\(424\) 10.5866 7.69164i 0.514132 0.373539i
\(425\) 18.1692 + 30.9740i 0.881334 + 1.50246i
\(426\) 0 0
\(427\) −3.24765 + 4.47001i −0.157165 + 0.216319i
\(428\) 10.1430i 0.490278i
\(429\) 0 0
\(430\) −9.19216 7.39126i −0.443285 0.356438i
\(431\) −1.48092 1.07595i −0.0713332 0.0518266i 0.551547 0.834144i \(-0.314038\pi\)
−0.622880 + 0.782317i \(0.714038\pi\)
\(432\) 0 0
\(433\) 1.96304 0.637830i 0.0943377 0.0306522i −0.261468 0.965212i \(-0.584207\pi\)
0.355806 + 0.934560i \(0.384207\pi\)
\(434\) 4.94588 3.59339i 0.237410 0.172488i
\(435\) 0 0
\(436\) 5.13362 + 15.7996i 0.245856 + 0.756666i
\(437\) −25.3220 8.22762i −1.21132 0.393580i
\(438\) 0 0
\(439\) 20.5451 0.980562 0.490281 0.871564i \(-0.336894\pi\)
0.490281 + 0.871564i \(0.336894\pi\)
\(440\) 7.06816 + 2.24525i 0.336961 + 0.107038i
\(441\) 0 0
\(442\) 13.0387 17.9462i 0.620186 0.853613i
\(443\) 8.10708 + 2.63415i 0.385179 + 0.125152i 0.495204 0.868777i \(-0.335093\pi\)
−0.110025 + 0.993929i \(0.535093\pi\)
\(444\) 0 0
\(445\) 24.6590 + 1.20696i 1.16895 + 0.0572156i
\(446\) −10.0028 + 7.26744i −0.473645 + 0.344123i
\(447\) 0 0
\(448\) 1.51700 + 0.492904i 0.0716716 + 0.0232875i
\(449\) −13.9587 10.1416i −0.658751 0.478610i 0.207490 0.978237i \(-0.433471\pi\)
−0.866241 + 0.499627i \(0.833471\pi\)
\(450\) 0 0
\(451\) −9.21644 + 34.8321i −0.433985 + 1.64018i
\(452\) 4.07236i 0.191548i
\(453\) 0 0
\(454\) 6.84360 21.0624i 0.321186 0.988509i
\(455\) 3.91237 10.2982i 0.183415 0.482787i
\(456\) 0 0
\(457\) 2.85897 + 3.93503i 0.133737 + 0.184073i 0.870633 0.491933i \(-0.163709\pi\)
−0.736896 + 0.676006i \(0.763709\pi\)
\(458\) −2.35045 + 0.763708i −0.109829 + 0.0356857i
\(459\) 0 0
\(460\) 7.30863 1.98541i 0.340766 0.0925703i
\(461\) −7.98212 −0.371765 −0.185882 0.982572i \(-0.559514\pi\)
−0.185882 + 0.982572i \(0.559514\pi\)
\(462\) 0 0
\(463\) 35.8094i 1.66420i −0.554623 0.832102i \(-0.687137\pi\)
0.554623 0.832102i \(-0.312863\pi\)
\(464\) 5.70348 + 4.14382i 0.264777 + 0.192372i
\(465\) 0 0
\(466\) −8.76271 26.9688i −0.405925 1.24931i
\(467\) 19.3266 + 26.6008i 0.894330 + 1.23094i 0.972241 + 0.233980i \(0.0751750\pi\)
−0.0779110 + 0.996960i \(0.524825\pi\)
\(468\) 0 0
\(469\) 0.417333 + 1.28442i 0.0192706 + 0.0593089i
\(470\) −14.7476 + 9.64973i −0.680254 + 0.445109i
\(471\) 0 0
\(472\) 2.71094i 0.124781i
\(473\) 0.970319 + 17.4682i 0.0446153 + 0.803187i
\(474\) 0 0
\(475\) 15.7385 36.0167i 0.722134 1.65256i
\(476\) 3.54000 10.8950i 0.162256 0.499372i
\(477\) 0 0
\(478\) −4.77976 6.57877i −0.218621 0.300906i
\(479\) −11.6452 + 8.46071i −0.532081 + 0.386580i −0.821136 0.570733i \(-0.806659\pi\)
0.289054 + 0.957313i \(0.406659\pi\)
\(480\) 0 0
\(481\) 0.108749 0.334694i 0.00495851 0.0152607i
\(482\) −1.84051 + 2.53324i −0.0838327 + 0.115386i
\(483\) 0 0
\(484\) −4.53694 10.0208i −0.206225 0.455490i
\(485\) 2.28318 2.83948i 0.103674 0.128934i
\(486\) 0 0
\(487\) 20.6203 + 6.69995i 0.934396 + 0.303604i 0.736359 0.676591i \(-0.236543\pi\)
0.198037 + 0.980195i \(0.436543\pi\)
\(488\) −3.29441 + 1.07042i −0.149131 + 0.0484555i
\(489\) 0 0
\(490\) −0.487086 + 9.95145i −0.0220043 + 0.449561i
\(491\) 8.87015 + 27.2995i 0.400304 + 1.23201i 0.924753 + 0.380568i \(0.124271\pi\)
−0.524449 + 0.851442i \(0.675729\pi\)
\(492\) 0 0
\(493\) 29.7607 40.9620i 1.34035 1.84484i
\(494\) −24.2802 −1.09242
\(495\) 0 0
\(496\) 3.83271 0.172094
\(497\) 13.8787 19.1024i 0.622546 0.856861i
\(498\) 0 0
\(499\) −4.01880 12.3686i −0.179906 0.553694i 0.819917 0.572482i \(-0.194019\pi\)
−0.999823 + 0.0187879i \(0.994019\pi\)
\(500\) 1.86328 + 11.0240i 0.0833283 + 0.493008i
\(501\) 0 0
\(502\) −11.9086 + 3.86934i −0.531507 + 0.172697i
\(503\) 20.2810 + 6.58970i 0.904285 + 0.293820i 0.724004 0.689795i \(-0.242299\pi\)
0.180280 + 0.983615i \(0.442299\pi\)
\(504\) 0 0
\(505\) −6.99037 5.62084i −0.311067 0.250124i
\(506\) −9.44016 6.08857i −0.419666 0.270670i
\(507\) 0 0
\(508\) −4.05022 + 5.57465i −0.179700 + 0.247335i
\(509\) −13.1764 + 40.5528i −0.584034 + 1.79747i 0.0190823 + 0.999818i \(0.493926\pi\)
−0.603116 + 0.797653i \(0.706074\pi\)
\(510\) 0 0
\(511\) 16.2593 11.8131i 0.719271 0.522581i
\(512\) 0.587785 + 0.809017i 0.0259767 + 0.0357538i
\(513\) 0 0
\(514\) −1.13497 + 3.49308i −0.0500613 + 0.154073i
\(515\) −6.12773 + 1.66462i −0.270020 + 0.0733518i
\(516\) 0 0
\(517\) 25.2710 + 6.68662i 1.11142 + 0.294077i
\(518\) 0.181739i 0.00798516i
\(519\) 0 0
\(520\) 5.77925 3.78152i 0.253437 0.165831i
\(521\) 6.85194 + 21.0881i 0.300189 + 0.923886i 0.981429 + 0.191826i \(0.0614409\pi\)
−0.681240 + 0.732060i \(0.738559\pi\)
\(522\) 0 0
\(523\) 9.87255 + 13.5884i 0.431697 + 0.594179i 0.968342 0.249629i \(-0.0803085\pi\)
−0.536645 + 0.843808i \(0.680309\pi\)
\(524\) −0.511415 1.57397i −0.0223413 0.0687594i
\(525\) 0 0
\(526\) 14.6186 + 10.6211i 0.637403 + 0.463100i
\(527\) 27.5263i 1.19907i
\(528\) 0 0
\(529\) 11.5284 0.501236
\(530\) −7.67077 28.2374i −0.333197 1.22655i
\(531\) 0 0
\(532\) −11.9252 + 3.87474i −0.517024 + 0.167991i
\(533\) 19.7228 + 27.1461i 0.854290 + 1.17583i
\(534\) 0 0
\(535\) −21.2019 8.05475i −0.916636 0.348237i
\(536\) −0.261639 + 0.805243i −0.0113011 + 0.0347812i
\(537\) 0 0
\(538\) 20.5365i 0.885392i
\(539\) 11.4555 9.33605i 0.493425 0.402132i
\(540\) 0 0
\(541\) −29.7967 21.6486i −1.28106 0.930745i −0.281476 0.959568i \(-0.590824\pi\)
−0.999585 + 0.0288233i \(0.990824\pi\)
\(542\) 7.64590 + 2.48430i 0.328419 + 0.106710i
\(543\) 0 0
\(544\) 5.81031 4.22144i 0.249115 0.180993i
\(545\) 37.1028 + 1.81604i 1.58931 + 0.0777906i
\(546\) 0 0
\(547\) −12.0381 3.91143i −0.514714 0.167241i 0.0401310 0.999194i \(-0.487222\pi\)
−0.554845 + 0.831954i \(0.687222\pi\)
\(548\) 5.44871 7.49951i 0.232758 0.320363i
\(549\) 0 0
\(550\) 10.3062 12.9916i 0.439459 0.553964i
\(551\) −55.4195 −2.36095
\(552\) 0 0
\(553\) 5.35982 + 1.74151i 0.227923 + 0.0740566i
\(554\) −7.12861 21.9396i −0.302866 0.932125i
\(555\) 0 0
\(556\) −3.74675 + 2.72217i −0.158898 + 0.115446i
\(557\) −16.5671 + 5.38297i −0.701969 + 0.228084i −0.638188 0.769880i \(-0.720316\pi\)
−0.0637811 + 0.997964i \(0.520316\pi\)
\(558\) 0 0
\(559\) 13.1811 + 9.57660i 0.557499 + 0.405047i
\(560\) 2.23500 2.77957i 0.0944461 0.117458i
\(561\) 0 0
\(562\) 15.6210i 0.658934i
\(563\) 13.4907 18.5684i 0.568566 0.782564i −0.423818 0.905747i \(-0.639310\pi\)
0.992384 + 0.123183i \(0.0393103\pi\)
\(564\) 0 0
\(565\) −8.51246 3.23395i −0.358122 0.136053i
\(566\) 9.46335 6.87552i 0.397774 0.289000i
\(567\) 0 0
\(568\) 14.0785 4.57440i 0.590722 0.191937i
\(569\) −3.37831 + 10.3974i −0.141626 + 0.435880i −0.996562 0.0828538i \(-0.973597\pi\)
0.854936 + 0.518734i \(0.173597\pi\)
\(570\) 0 0
\(571\) −40.1311 −1.67944 −0.839718 0.543023i \(-0.817280\pi\)
−0.839718 + 0.543023i \(0.817280\pi\)
\(572\) −9.90318 2.62035i −0.414073 0.109562i
\(573\) 0 0
\(574\) 14.0189 + 10.1853i 0.585139 + 0.425128i
\(575\) 1.65383 16.8539i 0.0689695 0.702857i
\(576\) 0 0
\(577\) 2.82996 + 3.89510i 0.117813 + 0.162155i 0.863850 0.503748i \(-0.168046\pi\)
−0.746038 + 0.665904i \(0.768046\pi\)
\(578\) −20.3258 27.9760i −0.845441 1.16365i
\(579\) 0 0
\(580\) 13.1911 8.63130i 0.547731 0.358395i
\(581\) −8.88446 6.45494i −0.368590 0.267796i
\(582\) 0 0
\(583\) −23.5236 + 36.4727i −0.974249 + 1.51054i
\(584\) 12.5999 0.521386
\(585\) 0 0
\(586\) 5.02234 15.4572i 0.207471 0.638530i
\(587\) 12.2061 3.96601i 0.503800 0.163695i −0.0460806 0.998938i \(-0.514673\pi\)
0.549881 + 0.835243i \(0.314673\pi\)
\(588\) 0 0
\(589\) −24.3750 + 17.7095i −1.00435 + 0.729706i
\(590\) 5.66668 + 2.15281i 0.233293 + 0.0886300i
\(591\) 0 0
\(592\) 0.0669711 0.0921778i 0.00275250 0.00378849i
\(593\) 22.0348i 0.904862i 0.891799 + 0.452431i \(0.149443\pi\)
−0.891799 + 0.452431i \(0.850557\pi\)
\(594\) 0 0
\(595\) −19.9627 16.0517i −0.818391 0.658054i
\(596\) 4.57146 + 3.32136i 0.187254 + 0.136048i
\(597\) 0 0
\(598\) −9.94925 + 3.23271i −0.406855 + 0.132195i
\(599\) 12.1174 8.80382i 0.495104 0.359714i −0.312040 0.950069i \(-0.601012\pi\)
0.807144 + 0.590355i \(0.201012\pi\)
\(600\) 0 0
\(601\) 3.26421 + 10.0462i 0.133150 + 0.409793i 0.995298 0.0968639i \(-0.0308812\pi\)
−0.862148 + 0.506657i \(0.830881\pi\)
\(602\) 8.00214 + 2.60005i 0.326143 + 0.105970i
\(603\) 0 0
\(604\) −1.46776 −0.0597223
\(605\) −24.5494 + 1.52585i −0.998074 + 0.0620346i
\(606\) 0 0
\(607\) 3.11488 4.28726i 0.126429 0.174015i −0.741110 0.671383i \(-0.765700\pi\)
0.867539 + 0.497369i \(0.165700\pi\)
\(608\) −7.47630 2.42920i −0.303204 0.0985169i
\(609\) 0 0
\(610\) −0.378665 + 7.73635i −0.0153317 + 0.313236i
\(611\) 19.6948 14.3091i 0.796766 0.578884i
\(612\) 0 0
\(613\) 14.1110 + 4.58495i 0.569939 + 0.185184i 0.579788 0.814767i \(-0.303135\pi\)
−0.00984944 + 0.999951i \(0.503135\pi\)
\(614\) 17.6730 + 12.8402i 0.713226 + 0.518189i
\(615\) 0 0
\(616\) −5.28210 + 0.293409i −0.212822 + 0.0118218i
\(617\) 30.2576i 1.21812i −0.793123 0.609062i \(-0.791546\pi\)
0.793123 0.609062i \(-0.208454\pi\)
\(618\) 0 0
\(619\) −2.37812 + 7.31911i −0.0955848 + 0.294180i −0.987406 0.158209i \(-0.949428\pi\)
0.891821 + 0.452389i \(0.149428\pi\)
\(620\) 3.04364 8.01153i 0.122236 0.321751i
\(621\) 0 0
\(622\) −12.9278 17.7935i −0.518356 0.713456i
\(623\) −16.7493 + 5.44217i −0.671046 + 0.218036i
\(624\) 0 0
\(625\) 24.5231 + 4.85958i 0.980926 + 0.194383i
\(626\) −7.58302 −0.303078
\(627\) 0 0
\(628\) 11.2348i 0.448318i
\(629\) −0.662016 0.480983i −0.0263963 0.0191780i
\(630\) 0 0
\(631\) 0.599553 + 1.84523i 0.0238678 + 0.0734576i 0.962281 0.272058i \(-0.0877041\pi\)
−0.938413 + 0.345515i \(0.887704\pi\)
\(632\) 2.07675 + 2.85840i 0.0826085 + 0.113701i
\(633\) 0 0
\(634\) −2.98403 9.18390i −0.118511 0.364739i
\(635\) 8.43634 + 12.8931i 0.334786 + 0.511649i
\(636\) 0 0
\(637\) 13.7624i 0.545286i
\(638\) −22.6039 5.98092i −0.894899 0.236787i
\(639\) 0 0
\(640\) 2.15786 0.586191i 0.0852971 0.0231712i
\(641\) 9.06687 27.9050i 0.358120 1.10218i −0.596058 0.802941i \(-0.703267\pi\)
0.954178 0.299239i \(-0.0967327\pi\)
\(642\) 0 0
\(643\) −9.13808 12.5775i −0.360371 0.496007i 0.589881 0.807490i \(-0.299174\pi\)
−0.950252 + 0.311482i \(0.899174\pi\)
\(644\) −4.37068 + 3.17548i −0.172229 + 0.125132i
\(645\) 0 0
\(646\) −17.4463 + 53.6943i −0.686417 + 2.11258i
\(647\) −17.7161 + 24.3842i −0.696493 + 0.958640i 0.303490 + 0.952835i \(0.401848\pi\)
−0.999983 + 0.00580579i \(0.998152\pi\)
\(648\) 0 0
\(649\) −3.24841 8.38384i −0.127511 0.329094i
\(650\) −3.31510 15.0834i −0.130029 0.591619i
\(651\) 0 0
\(652\) 7.24811 + 2.35505i 0.283858 + 0.0922310i
\(653\) −27.5016 + 8.93580i −1.07622 + 0.349685i −0.792907 0.609343i \(-0.791433\pi\)
−0.283313 + 0.959028i \(0.591433\pi\)
\(654\) 0 0
\(655\) −3.69621 0.180915i −0.144423 0.00706895i
\(656\) 3.35707 + 10.3320i 0.131071 + 0.403396i
\(657\) 0 0
\(658\) 7.38957 10.1709i 0.288076 0.396502i
\(659\) 15.6578 0.609941 0.304970 0.952362i \(-0.401353\pi\)
0.304970 + 0.952362i \(0.401353\pi\)
\(660\) 0 0
\(661\) 4.58381 0.178289 0.0891447 0.996019i \(-0.471587\pi\)
0.0891447 + 0.996019i \(0.471587\pi\)
\(662\) −18.5330 + 25.5085i −0.720307 + 0.991418i
\(663\) 0 0
\(664\) −2.12753 6.54787i −0.0825643 0.254107i
\(665\) −1.37071 + 28.0043i −0.0531537 + 1.08596i
\(666\) 0 0
\(667\) −22.7091 + 7.37863i −0.879300 + 0.285702i
\(668\) 7.90719 + 2.56920i 0.305938 + 0.0994054i
\(669\) 0 0
\(670\) 1.47543 + 1.18637i 0.0570007 + 0.0458333i
\(671\) 8.90564 7.25793i 0.343798 0.280189i
\(672\) 0 0
\(673\) −4.50567 + 6.20153i −0.173681 + 0.239051i −0.886979 0.461809i \(-0.847200\pi\)
0.713298 + 0.700860i \(0.247200\pi\)
\(674\) −4.57330 + 14.0752i −0.176157 + 0.542155i
\(675\) 0 0
\(676\) 2.79925 2.03378i 0.107664 0.0782222i
\(677\) 10.3141 + 14.1961i 0.396402 + 0.545601i 0.959837 0.280560i \(-0.0905201\pi\)
−0.563434 + 0.826161i \(0.690520\pi\)
\(678\) 0 0
\(679\) −0.803163 + 2.47188i −0.0308226 + 0.0948622i
\(680\) −4.20999 15.4977i −0.161446 0.594308i
\(681\) 0 0
\(682\) −11.8530 + 4.59259i −0.453877 + 0.175859i
\(683\) 26.1699i 1.00136i 0.865631 + 0.500682i \(0.166918\pi\)
−0.865631 + 0.500682i \(0.833082\pi\)
\(684\) 0 0
\(685\) −11.3493 17.3450i −0.433635 0.662718i
\(686\) −5.64658 17.3784i −0.215588 0.663510i
\(687\) 0 0
\(688\) 3.10055 + 4.26754i 0.118207 + 0.162699i
\(689\) 12.4898 + 38.4396i 0.475823 + 1.46443i
\(690\) 0 0
\(691\) −14.2231 10.3337i −0.541072 0.393112i 0.283411 0.958999i \(-0.408534\pi\)
−0.824483 + 0.565887i \(0.808534\pi\)
\(692\) 7.82571i 0.297489i
\(693\) 0 0
\(694\) −2.93578 −0.111441
\(695\) 2.71479 + 9.99358i 0.102978 + 0.379078i
\(696\) 0 0
\(697\) 74.2037 24.1103i 2.81067 0.913241i
\(698\) 8.44914 + 11.6292i 0.319805 + 0.440173i
\(699\) 0 0
\(700\) −4.03527 6.87915i −0.152519 0.260008i
\(701\) 15.7781 48.5601i 0.595931 1.83409i 0.0458967 0.998946i \(-0.485385\pi\)
0.550035 0.835142i \(-0.314615\pi\)
\(702\) 0 0
\(703\) 0.895672i 0.0337809i
\(704\) −2.78720 1.79765i −0.105046 0.0677513i
\(705\) 0 0
\(706\) 22.4968 + 16.3449i 0.846677 + 0.615147i
\(707\) 6.08539 + 1.97726i 0.228865 + 0.0743627i
\(708\) 0 0
\(709\) 0.429513 0.312059i 0.0161307 0.0117196i −0.579691 0.814837i \(-0.696827\pi\)
0.595821 + 0.803117i \(0.296827\pi\)
\(710\) 1.61821 33.0611i 0.0607304 1.24076i
\(711\) 0 0
\(712\) −10.5007 3.41187i −0.393529 0.127865i
\(713\) −7.63021 + 10.5021i −0.285754 + 0.393306i
\(714\) 0 0
\(715\) −13.3417 + 18.6198i −0.498950 + 0.696340i
\(716\) −18.7059 −0.699072
\(717\) 0 0
\(718\) 0.979893 + 0.318387i 0.0365693 + 0.0118821i
\(719\) −2.56495 7.89412i −0.0956566 0.294401i 0.891768 0.452494i \(-0.149465\pi\)
−0.987424 + 0.158093i \(0.949465\pi\)
\(720\) 0 0
\(721\) 3.66448 2.66240i 0.136472 0.0991530i
\(722\) 40.7015 13.2247i 1.51475 0.492172i
\(723\) 0 0
\(724\) −3.59193 2.60969i −0.133493 0.0969885i
\(725\) −7.56668 34.4277i −0.281020 1.27861i
\(726\) 0 0
\(727\) 37.1595i 1.37817i 0.724681 + 0.689084i \(0.241987\pi\)
−0.724681 + 0.689084i \(0.758013\pi\)
\(728\) −2.89582 + 3.98575i −0.107326 + 0.147722i
\(729\) 0 0
\(730\) 10.0058 26.3375i 0.370332 0.974795i
\(731\) 30.6492 22.2680i 1.13360 0.823611i
\(732\) 0 0
\(733\) −17.6297 + 5.72823i −0.651167 + 0.211577i −0.615928 0.787802i \(-0.711219\pi\)
−0.0352381 + 0.999379i \(0.511219\pi\)
\(734\) −0.469215 + 1.44410i −0.0173191 + 0.0533026i
\(735\) 0 0
\(736\) −3.38697 −0.124845
\(737\) −0.155745 2.80380i −0.00573695 0.103279i
\(738\) 0 0
\(739\) 34.5945 + 25.1344i 1.27258 + 0.924583i 0.999302 0.0373528i \(-0.0118925\pi\)
0.273277 + 0.961935i \(0.411893\pi\)
\(740\) −0.139496 0.213190i −0.00512799 0.00783704i
\(741\) 0 0
\(742\) 12.2687 + 16.8864i 0.450398 + 0.619920i
\(743\) −23.7030 32.6244i −0.869579 1.19687i −0.979200 0.202899i \(-0.934964\pi\)
0.109621 0.993973i \(-0.465036\pi\)
\(744\) 0 0
\(745\) 10.5729 6.91817i 0.387363 0.253462i
\(746\) 2.78719 + 2.02501i 0.102046 + 0.0741411i
\(747\) 0 0
\(748\) −12.9106 + 20.0175i −0.472058 + 0.731912i
\(749\) 16.1787 0.591158
\(750\) 0 0
\(751\) 2.97952 9.17002i 0.108724 0.334619i −0.881862 0.471507i \(-0.843710\pi\)
0.990586 + 0.136888i \(0.0437101\pi\)
\(752\) 7.49596 2.43559i 0.273350 0.0888167i
\(753\) 0 0
\(754\) −17.6162 + 12.7989i −0.641544 + 0.466109i
\(755\) −1.16558 + 3.06806i −0.0424198 + 0.111658i
\(756\) 0 0
\(757\) −19.3024 + 26.5674i −0.701557 + 0.965610i 0.298381 + 0.954447i \(0.403553\pi\)
−0.999938 + 0.0111630i \(0.996447\pi\)
\(758\) 15.5510i 0.564839i
\(759\) 0 0
\(760\) −11.0149 + 13.6987i −0.399551 + 0.496902i
\(761\) 24.6628 + 17.9186i 0.894027 + 0.649549i 0.936925 0.349531i \(-0.113659\pi\)
−0.0428976 + 0.999079i \(0.513659\pi\)
\(762\) 0 0
\(763\) −25.2015 + 8.18848i −0.912357 + 0.296443i
\(764\) −8.35789 + 6.07236i −0.302378 + 0.219690i
\(765\) 0 0
\(766\) 4.84719 + 14.9181i 0.175136 + 0.539014i
\(767\) −7.96339 2.58746i −0.287541 0.0934279i
\(768\) 0 0
\(769\) 21.5091 0.775639 0.387819 0.921735i \(-0.373228\pi\)
0.387819 + 0.921735i \(0.373228\pi\)
\(770\) −3.58132 + 11.2742i −0.129062 + 0.406294i
\(771\) 0 0
\(772\) −1.89861 + 2.61321i −0.0683324 + 0.0940515i
\(773\) −22.1692 7.20320i −0.797369 0.259081i −0.118130 0.992998i \(-0.537690\pi\)
−0.679239 + 0.733917i \(0.737690\pi\)
\(774\) 0 0
\(775\) −14.3295 12.7243i −0.514731 0.457070i
\(776\) −1.31826 + 0.957769i −0.0473226 + 0.0343819i
\(777\) 0 0
\(778\) 27.0731 + 8.79657i 0.970616 + 0.315372i
\(779\) −69.0900 50.1969i −2.47541 1.79849i
\(780\) 0 0
\(781\) −38.0580 + 31.0165i −1.36182 + 1.10986i
\(782\) 24.3250i 0.869861i
\(783\) 0 0
\(784\) 1.37690 4.23767i 0.0491751 0.151345i
\(785\) 23.4842 + 8.92183i 0.838187 + 0.318434i
\(786\) 0 0
\(787\) 21.8340 + 30.0520i 0.778299 + 1.07124i 0.995467 + 0.0951025i \(0.0303179\pi\)
−0.217169 + 0.976134i \(0.569682\pi\)
\(788\) 2.90391 0.943537i 0.103447 0.0336121i
\(789\) 0 0
\(790\) 7.62410 2.07111i 0.271253 0.0736869i
\(791\) 6.49569 0.230960
\(792\) 0 0
\(793\) 10.6990i 0.379933i
\(794\) −11.2376 8.16462i −0.398809 0.289751i
\(795\) 0 0
\(796\) −1.05987 3.26195i −0.0375662 0.115617i
\(797\) 6.96155 + 9.58176i 0.246591 + 0.339403i 0.914314 0.405007i \(-0.132731\pi\)
−0.667723 + 0.744410i \(0.732731\pi\)
\(798\) 0 0
\(799\) −17.4922 53.8356i −0.618831 1.90457i
\(800\) 0.488292 4.97610i 0.0172637 0.175932i
\(801\) 0 0
\(802\) 16.5762i 0.585325i
\(803\) −38.9663 + 15.0979i −1.37509 + 0.532794i
\(804\) 0 0
\(805\) 3.16687 + 11.6578i 0.111618 + 0.410882i
\(806\) −3.65815 + 11.2586i −0.128853 + 0.396568i
\(807\) 0 0
\(808\) 2.35788 + 3.24534i 0.0829499 + 0.114171i
\(809\) 27.3999 19.9072i 0.963330 0.699900i 0.00940804 0.999956i \(-0.497005\pi\)
0.953922 + 0.300056i \(0.0970053\pi\)
\(810\) 0 0
\(811\) −5.10014 + 15.6966i −0.179090 + 0.551182i −0.999797 0.0201674i \(-0.993580\pi\)
0.820707 + 0.571350i \(0.193580\pi\)
\(812\) −6.60968 + 9.09744i −0.231954 + 0.319258i
\(813\) 0 0
\(814\) −0.0966618 + 0.365318i −0.00338799 + 0.0128044i
\(815\) 10.6787 13.2805i 0.374057 0.465197i
\(816\) 0 0
\(817\) −39.4373 12.8139i −1.37974 0.448303i
\(818\) 5.07486 1.64892i 0.177438 0.0576533i
\(819\) 0 0
\(820\) 24.2629 + 1.18758i 0.847298 + 0.0414720i
\(821\) −10.2401 31.5158i −0.357382 1.09991i −0.954615 0.297842i \(-0.903733\pi\)
0.597233 0.802068i \(-0.296267\pi\)
\(822\) 0 0
\(823\) −9.70984 + 13.3644i −0.338464 + 0.465855i −0.943992 0.329968i \(-0.892962\pi\)
0.605528 + 0.795824i \(0.292962\pi\)
\(824\) 2.83972 0.0989263
\(825\) 0 0
\(826\) −4.32413 −0.150456
\(827\) 13.3414 18.3628i 0.463924 0.638537i −0.511393 0.859347i \(-0.670870\pi\)
0.975317 + 0.220810i \(0.0708702\pi\)
\(828\) 0 0
\(829\) −4.48511 13.8038i −0.155774 0.479424i 0.842464 0.538752i \(-0.181104\pi\)
−0.998239 + 0.0593282i \(0.981104\pi\)
\(830\) −15.3766 0.752624i −0.533728 0.0261240i
\(831\) 0 0
\(832\) −2.93751 + 0.954454i −0.101840 + 0.0330897i
\(833\) −30.4347 9.88884i −1.05450 0.342628i
\(834\) 0 0
\(835\) 11.6497 14.4882i 0.403154 0.501384i
\(836\) 26.0320 1.44602i 0.900336 0.0500117i
\(837\) 0 0
\(838\) −21.4884 + 29.5763i −0.742305 + 1.02170i
\(839\) −7.55580 + 23.2544i −0.260855 + 0.802830i 0.731764 + 0.681558i \(0.238697\pi\)
−0.992619 + 0.121272i \(0.961303\pi\)
\(840\) 0 0
\(841\) −16.7474 + 12.1677i −0.577495 + 0.419575i
\(842\) 21.5799 + 29.7022i 0.743693 + 1.02361i
\(843\) 0 0
\(844\) −6.48423 + 19.9564i −0.223196 + 0.686927i
\(845\) −2.02826 7.46636i −0.0697743 0.256851i
\(846\) 0 0
\(847\) 15.9839 7.23674i 0.549212 0.248657i
\(848\) 13.0858i 0.449368i
\(849\) 0 0
\(850\) −35.7381 3.50689i −1.22581 0.120285i
\(851\) 0.119251 + 0.367017i 0.00408788 + 0.0125812i
\(852\) 0 0
\(853\) −27.3396 37.6297i −0.936089 1.28842i −0.957437 0.288643i \(-0.906796\pi\)
0.0213482 0.999772i \(-0.493204\pi\)
\(854\) −1.70739 5.25481i −0.0584257 0.179816i
\(855\) 0 0
\(856\) 8.20582 + 5.96188i 0.280469 + 0.203773i
\(857\) 29.5687i 1.01005i −0.863105 0.505025i \(-0.831483\pi\)
0.863105 0.505025i \(-0.168517\pi\)
\(858\) 0 0
\(859\) 4.06703 0.138765 0.0693827 0.997590i \(-0.477897\pi\)
0.0693827 + 0.997590i \(0.477897\pi\)
\(860\) 11.3827 3.09214i 0.388146 0.105441i
\(861\) 0 0
\(862\) 1.74092 0.565659i 0.0592960 0.0192664i
\(863\) −17.9725 24.7370i −0.611792 0.842059i 0.384932 0.922945i \(-0.374225\pi\)
−0.996723 + 0.0808861i \(0.974225\pi\)
\(864\) 0 0
\(865\) −16.3581 6.21458i −0.556193 0.211302i
\(866\) −0.637830 + 1.96304i −0.0216744 + 0.0667068i
\(867\) 0 0
\(868\) 6.11344i 0.207504i
\(869\) −9.84764 6.35139i −0.334058 0.215456i
\(870\) 0 0
\(871\) −2.11568 1.53713i −0.0716872 0.0520838i
\(872\) −15.7996 5.13362i −0.535044 0.173846i
\(873\) 0 0
\(874\) 21.5402 15.6499i 0.728608 0.529365i
\(875\) −17.5840 + 2.97206i −0.594448 + 0.100474i
\(876\) 0 0
\(877\) −9.86823 3.20638i −0.333226 0.108272i 0.137625 0.990484i \(-0.456053\pi\)
−0.470851 + 0.882213i \(0.656053\pi\)
\(878\) −12.0761 + 16.6213i −0.407548 + 0.560942i
\(879\) 0 0
\(880\) −5.97100 + 4.39854i −0.201282 + 0.148275i
\(881\) −53.8606 −1.81461 −0.907305 0.420472i \(-0.861864\pi\)
−0.907305 + 0.420472i \(0.861864\pi\)
\(882\) 0 0
\(883\) 43.3238 + 14.0768i 1.45796 + 0.473721i 0.927447 0.373954i \(-0.121998\pi\)
0.530516 + 0.847675i \(0.321998\pi\)
\(884\) 6.85483 + 21.0970i 0.230553 + 0.709569i
\(885\) 0 0
\(886\) −6.89630 + 5.01045i −0.231686 + 0.168329i
\(887\) 0.816383 0.265259i 0.0274115 0.00890653i −0.295279 0.955411i \(-0.595413\pi\)
0.322691 + 0.946504i \(0.395413\pi\)
\(888\) 0 0
\(889\) −8.89196 6.46038i −0.298227 0.216674i
\(890\) −15.4707 + 19.2401i −0.518578 + 0.644931i
\(891\) 0 0
\(892\) 12.3641i 0.413981i
\(893\) −36.4183 + 50.1255i −1.21869 + 1.67739i
\(894\) 0 0
\(895\) −14.8548 + 39.1010i −0.496540 + 1.30700i
\(896\) −1.29044 + 0.937558i −0.0431105 + 0.0313216i
\(897\) 0 0
\(898\) 16.4094 5.33174i 0.547589 0.177923i
\(899\) −8.34970 + 25.6977i −0.278478 + 0.857067i
\(900\) 0 0
\(901\) 93.9814 3.13097
\(902\) −22.7625 27.9301i −0.757907 0.929969i
\(903\) 0 0
\(904\) 3.29461 + 2.39367i 0.109577 + 0.0796123i
\(905\) −8.30749 + 5.43582i −0.276150 + 0.180693i
\(906\) 0 0
\(907\) −26.5459 36.5372i −0.881441 1.21320i −0.976020 0.217682i \(-0.930150\pi\)
0.0945788 0.995517i \(-0.469850\pi\)
\(908\) 13.0173 + 17.9168i 0.431994 + 0.594589i
\(909\) 0 0
\(910\) 6.03179 + 9.21831i 0.199952 + 0.305584i
\(911\) −2.57442 1.87043i −0.0852944 0.0619700i 0.544321 0.838877i \(-0.316787\pi\)
−0.629615 + 0.776907i \(0.716787\pi\)
\(912\) 0 0
\(913\) 14.4257 + 17.7006i 0.477420 + 0.585804i
\(914\) −4.86397 −0.160886
\(915\) 0 0
\(916\) 0.763708 2.35045i 0.0252336 0.0776611i
\(917\) 2.51060 0.815743i 0.0829072 0.0269382i
\(918\) 0 0
\(919\) −9.65072 + 7.01166i −0.318348 + 0.231293i −0.735470 0.677557i \(-0.763039\pi\)
0.417122 + 0.908850i \(0.363039\pi\)
\(920\) −2.68967 + 7.07980i −0.0886758 + 0.233414i
\(921\) 0 0
\(922\) 4.69177 6.45767i 0.154515 0.212672i
\(923\) 45.7219i 1.50495i
\(924\) 0 0
\(925\) −0.556410 + 0.122290i −0.0182947 + 0.00402088i
\(926\) 28.9704 + 21.0482i 0.952027 + 0.691688i
\(927\) 0 0
\(928\) −6.70484 + 2.17853i −0.220097 + 0.0715139i
\(929\) 5.38253 3.91064i 0.176595 0.128304i −0.495976 0.868336i \(-0.665190\pi\)
0.672571 + 0.740032i \(0.265190\pi\)
\(930\) 0 0
\(931\) 10.8239 + 33.3125i 0.354739 + 1.09177i
\(932\) 26.9688 + 8.76271i 0.883394 + 0.287032i
\(933\) 0 0
\(934\) −32.8805 −1.07588
\(935\) 31.5900 + 42.8834i 1.03310 + 1.40244i
\(936\) 0 0
\(937\) −16.3583 + 22.5152i −0.534401 + 0.735540i −0.987793 0.155771i \(-0.950214\pi\)
0.453392 + 0.891311i \(0.350214\pi\)
\(938\) −1.28442 0.417333i −0.0419377 0.0136264i
\(939\) 0 0
\(940\) 0.861599 17.6030i 0.0281023 0.574146i
\(941\) 27.7448 20.1578i 0.904455 0.657125i −0.0351517 0.999382i \(-0.511191\pi\)
0.939606 + 0.342257i \(0.111191\pi\)
\(942\) 0 0
\(943\) −34.9941 11.3703i −1.13957 0.370267i
\(944\) −2.19319 1.59345i −0.0713823 0.0518623i
\(945\) 0 0
\(946\) −14.7024 9.48253i −0.478016 0.308304i
\(947\) 27.0026i 0.877466i 0.898617 + 0.438733i \(0.144573\pi\)
−0.898617 + 0.438733i \(0.855427\pi\)
\(948\) 0 0
\(949\) −12.0260 + 37.0122i −0.390380 + 1.20147i
\(950\) 19.8872 + 33.9028i 0.645226 + 1.09995i
\(951\) 0 0
\(952\) 6.73349 + 9.26785i 0.218234 + 0.300373i
\(953\) 15.5840 5.06354i 0.504814 0.164024i −0.0455284 0.998963i \(-0.514497\pi\)
0.550342 + 0.834939i \(0.314497\pi\)
\(954\) 0 0
\(955\) 6.05589 + 22.2927i 0.195964 + 0.721376i
\(956\) 8.13181 0.263002
\(957\) 0 0
\(958\) 14.3942i 0.465056i
\(959\) 11.9622 + 8.69108i 0.386281 + 0.280650i
\(960\) 0 0
\(961\) −5.04016 15.5120i −0.162586 0.500388i
\(962\) 0.206852 + 0.284708i 0.00666918 + 0.00917934i
\(963\) 0 0
\(964\) −0.967611 2.97800i −0.0311646 0.0959149i
\(965\) 3.95467 + 6.04388i 0.127305 + 0.194559i
\(966\) 0 0
\(967\) 47.3726i 1.52340i −0.647930 0.761700i \(-0.724365\pi\)
0.647930 0.761700i \(-0.275635\pi\)
\(968\) 10.7737 + 2.21961i 0.346281 + 0.0713409i
\(969\) 0 0
\(970\) 0.955171 + 3.51614i 0.0306687 + 0.112896i
\(971\) −17.1803 + 52.8754i −0.551341 + 1.69685i 0.154076 + 0.988059i \(0.450760\pi\)
−0.705416 + 0.708793i \(0.749240\pi\)
\(972\) 0 0
\(973\) −4.34206 5.97633i −0.139200 0.191592i
\(974\) −17.5407 + 12.7441i −0.562040 + 0.408346i
\(975\) 0 0
\(976\) 1.07042 3.29441i 0.0342632 0.105451i
\(977\) −5.92739 + 8.15835i −0.189634 + 0.261009i −0.893239 0.449583i \(-0.851573\pi\)
0.703605 + 0.710592i \(0.251573\pi\)
\(978\) 0 0
\(979\) 36.5627 2.03098i 1.16855 0.0649103i
\(980\) −7.76459 6.24338i −0.248031 0.199437i
\(981\) 0 0
\(982\) −27.2995 8.87015i −0.871162 0.283058i
\(983\) 23.3479 7.58618i 0.744681 0.241962i 0.0879902 0.996121i \(-0.471956\pi\)
0.656691 + 0.754160i \(0.271956\pi\)
\(984\) 0 0
\(985\) 0.333780 6.81933i 0.0106351 0.217282i
\(986\) 15.6461 + 48.1538i 0.498273 + 1.53353i
\(987\) 0 0
\(988\) 14.2716 19.6431i 0.454039 0.624931i
\(989\) −17.8662 −0.568111
\(990\) 0 0
\(991\) −46.5618 −1.47908 −0.739541 0.673111i \(-0.764958\pi\)
−0.739541 + 0.673111i \(0.764958\pi\)
\(992\) −2.25281 + 3.10073i −0.0715269 + 0.0984483i
\(993\) 0 0
\(994\) 7.29648 + 22.4563i 0.231430 + 0.712269i
\(995\) −7.66013 0.374934i −0.242843 0.0118862i
\(996\) 0 0
\(997\) −26.1266 + 8.48904i −0.827437 + 0.268851i −0.691965 0.721931i \(-0.743255\pi\)
−0.135472 + 0.990781i \(0.543255\pi\)
\(998\) 12.3686 + 4.01880i 0.391521 + 0.127213i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.ba.i.829.1 32
3.2 odd 2 330.2.s.c.169.8 yes 32
5.4 even 2 inner 990.2.ba.i.829.6 32
11.3 even 5 inner 990.2.ba.i.289.6 32
15.14 odd 2 330.2.s.c.169.3 32
33.14 odd 10 330.2.s.c.289.3 yes 32
55.14 even 10 inner 990.2.ba.i.289.1 32
165.14 odd 10 330.2.s.c.289.8 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.s.c.169.3 32 15.14 odd 2
330.2.s.c.169.8 yes 32 3.2 odd 2
330.2.s.c.289.3 yes 32 33.14 odd 10
330.2.s.c.289.8 yes 32 165.14 odd 10
990.2.ba.i.289.1 32 55.14 even 10 inner
990.2.ba.i.289.6 32 11.3 even 5 inner
990.2.ba.i.829.1 32 1.1 even 1 trivial
990.2.ba.i.829.6 32 5.4 even 2 inner