Newspace parameters
Level: | \( N \) | \(=\) | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 990.ba (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.90518980011\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{10})\) |
Twist minimal: | no (minimal twist has level 330) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
289.1 | −0.587785 | − | 0.809017i | 0 | −0.309017 | + | 0.951057i | −2.23339 | + | 0.109316i | 0 | 1.51700 | + | 0.492904i | 0.951057 | − | 0.309017i | 0 | 1.40119 | + | 1.74260i | ||||||
289.2 | −0.587785 | − | 0.809017i | 0 | −0.309017 | + | 0.951057i | 0.256687 | + | 2.22129i | 0 | 3.54705 | + | 1.15250i | 0.951057 | − | 0.309017i | 0 | 1.64618 | − | 1.51330i | ||||||
289.3 | −0.587785 | − | 0.809017i | 0 | −0.309017 | + | 0.951057i | 0.450764 | − | 2.19016i | 0 | −2.88658 | − | 0.937907i | 0.951057 | − | 0.309017i | 0 | −2.03683 | + | 0.922670i | ||||||
289.4 | −0.587785 | − | 0.809017i | 0 | −0.309017 | + | 0.951057i | 1.38390 | + | 1.75636i | 0 | −3.49179 | − | 1.13455i | 0.951057 | − | 0.309017i | 0 | 0.607489 | − | 2.15197i | ||||||
289.5 | 0.587785 | + | 0.809017i | 0 | −0.309017 | + | 0.951057i | −1.94367 | + | 1.10550i | 0 | 2.88658 | + | 0.937907i | −0.951057 | + | 0.309017i | 0 | −2.03683 | − | 0.922670i | ||||||
289.6 | 0.587785 | + | 0.809017i | 0 | −0.309017 | + | 0.951057i | −0.586191 | − | 2.15786i | 0 | −1.51700 | − | 0.492904i | −0.951057 | + | 0.309017i | 0 | 1.40119 | − | 1.74260i | ||||||
289.7 | 0.587785 | + | 0.809017i | 0 | −0.309017 | + | 0.951057i | 2.09805 | + | 0.773425i | 0 | 3.49179 | + | 1.13455i | −0.951057 | + | 0.309017i | 0 | 0.607489 | + | 2.15197i | ||||||
289.8 | 0.587785 | + | 0.809017i | 0 | −0.309017 | + | 0.951057i | 2.19189 | − | 0.442291i | 0 | −3.54705 | − | 1.15250i | −0.951057 | + | 0.309017i | 0 | 1.64618 | + | 1.51330i | ||||||
379.1 | −0.951057 | + | 0.309017i | 0 | 0.809017 | − | 0.587785i | −2.14525 | + | 0.630779i | 0 | −0.890727 | − | 1.22598i | −0.587785 | + | 0.809017i | 0 | 1.84534 | − | 1.26283i | ||||||
379.2 | −0.951057 | + | 0.309017i | 0 | 0.809017 | − | 0.587785i | −0.178263 | − | 2.22895i | 0 | 2.46794 | + | 3.39683i | −0.587785 | + | 0.809017i | 0 | 0.858322 | + | 2.06477i | ||||||
379.3 | −0.951057 | + | 0.309017i | 0 | 0.809017 | − | 0.587785i | 0.434075 | + | 2.19353i | 0 | 2.37317 | + | 3.26639i | −0.587785 | + | 0.809017i | 0 | −1.09067 | − | 1.95204i | ||||||
379.4 | −0.951057 | + | 0.309017i | 0 | 0.809017 | − | 0.587785i | 2.16821 | + | 0.546681i | 0 | −1.82376 | − | 2.51019i | −0.587785 | + | 0.809017i | 0 | −2.23103 | + | 0.150090i | ||||||
379.5 | 0.951057 | − | 0.309017i | 0 | 0.809017 | − | 0.587785i | −2.07545 | − | 0.832169i | 0 | 1.82376 | + | 2.51019i | 0.587785 | − | 0.809017i | 0 | −2.23103 | − | 0.150090i | ||||||
379.6 | 0.951057 | − | 0.309017i | 0 | 0.809017 | − | 0.587785i | −1.64050 | + | 1.51946i | 0 | −2.37317 | − | 3.26639i | 0.587785 | − | 0.809017i | 0 | −1.09067 | + | 1.95204i | ||||||
379.7 | 0.951057 | − | 0.309017i | 0 | 0.809017 | − | 0.587785i | 1.36479 | + | 1.77126i | 0 | 0.890727 | + | 1.22598i | 0.587785 | − | 0.809017i | 0 | 1.84534 | + | 1.26283i | ||||||
379.8 | 0.951057 | − | 0.309017i | 0 | 0.809017 | − | 0.587785i | 1.45436 | − | 1.69848i | 0 | −2.46794 | − | 3.39683i | 0.587785 | − | 0.809017i | 0 | 0.858322 | − | 2.06477i | ||||||
559.1 | −0.951057 | − | 0.309017i | 0 | 0.809017 | + | 0.587785i | −2.14525 | − | 0.630779i | 0 | −0.890727 | + | 1.22598i | −0.587785 | − | 0.809017i | 0 | 1.84534 | + | 1.26283i | ||||||
559.2 | −0.951057 | − | 0.309017i | 0 | 0.809017 | + | 0.587785i | −0.178263 | + | 2.22895i | 0 | 2.46794 | − | 3.39683i | −0.587785 | − | 0.809017i | 0 | 0.858322 | − | 2.06477i | ||||||
559.3 | −0.951057 | − | 0.309017i | 0 | 0.809017 | + | 0.587785i | 0.434075 | − | 2.19353i | 0 | 2.37317 | − | 3.26639i | −0.587785 | − | 0.809017i | 0 | −1.09067 | + | 1.95204i | ||||||
559.4 | −0.951057 | − | 0.309017i | 0 | 0.809017 | + | 0.587785i | 2.16821 | − | 0.546681i | 0 | −1.82376 | + | 2.51019i | −0.587785 | − | 0.809017i | 0 | −2.23103 | − | 0.150090i | ||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
55.j | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 990.2.ba.i | 32 | |
3.b | odd | 2 | 1 | 330.2.s.c | ✓ | 32 | |
5.b | even | 2 | 1 | inner | 990.2.ba.i | 32 | |
11.c | even | 5 | 1 | inner | 990.2.ba.i | 32 | |
15.d | odd | 2 | 1 | 330.2.s.c | ✓ | 32 | |
33.h | odd | 10 | 1 | 330.2.s.c | ✓ | 32 | |
55.j | even | 10 | 1 | inner | 990.2.ba.i | 32 | |
165.o | odd | 10 | 1 | 330.2.s.c | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
330.2.s.c | ✓ | 32 | 3.b | odd | 2 | 1 | |
330.2.s.c | ✓ | 32 | 15.d | odd | 2 | 1 | |
330.2.s.c | ✓ | 32 | 33.h | odd | 10 | 1 | |
330.2.s.c | ✓ | 32 | 165.o | odd | 10 | 1 | |
990.2.ba.i | 32 | 1.a | even | 1 | 1 | trivial | |
990.2.ba.i | 32 | 5.b | even | 2 | 1 | inner | |
990.2.ba.i | 32 | 11.c | even | 5 | 1 | inner | |
990.2.ba.i | 32 | 55.j | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(990, [\chi])\):
\( T_{7}^{32} - 35 T_{7}^{30} + 1014 T_{7}^{28} - 25754 T_{7}^{26} + 552757 T_{7}^{24} + \cdots + 779563031470336 \)
|
\( T_{13}^{32} - 103 T_{13}^{30} + 5800 T_{13}^{28} - 243581 T_{13}^{26} + 10462051 T_{13}^{24} + \cdots + 26\!\cdots\!36 \)
|
\( T_{29}^{16} + T_{29}^{15} + 109 T_{29}^{14} + 177 T_{29}^{13} + 7399 T_{29}^{12} - 2516 T_{29}^{11} + \cdots + 118810000 \)
|