L(s) = 1 | + (−0.587 + 0.809i)2-s + (−0.309 − 0.951i)4-s + (−2.23 − 0.109i)5-s + (1.51 − 0.492i)7-s + (0.951 + 0.309i)8-s + (1.40 − 1.74i)10-s + (−3.31 + 0.183i)11-s + (−1.81 + 2.49i)13-s + (−0.492 + 1.51i)14-s + (−0.809 + 0.587i)16-s + (4.22 + 5.81i)17-s + (2.42 − 7.47i)19-s + (0.586 + 2.15i)20-s + (1.79 − 2.78i)22-s − 3.38i·23-s + ⋯ |
L(s) = 1 | + (−0.415 + 0.572i)2-s + (−0.154 − 0.475i)4-s + (−0.998 − 0.0488i)5-s + (0.573 − 0.186i)7-s + (0.336 + 0.109i)8-s + (0.443 − 0.551i)10-s + (−0.998 + 0.0554i)11-s + (−0.503 + 0.693i)13-s + (−0.131 + 0.405i)14-s + (−0.202 + 0.146i)16-s + (1.02 + 1.40i)17-s + (0.557 − 1.71i)19-s + (0.131 + 0.482i)20-s + (0.383 − 0.594i)22-s − 0.706i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.612 + 0.790i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.612 + 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.663935 - 0.325694i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.663935 - 0.325694i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.587 - 0.809i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.23 + 0.109i)T \) |
| 11 | \( 1 + (3.31 - 0.183i)T \) |
good | 7 | \( 1 + (-1.51 + 0.492i)T + (5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (1.81 - 2.49i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.22 - 5.81i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.42 + 7.47i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 3.38iT - 23T^{2} \) |
| 29 | \( 1 + (2.17 + 6.70i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (3.10 + 2.25i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.108 - 0.0352i)T + (29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-3.35 + 10.3i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 5.27iT - 43T^{2} \) |
| 47 | \( 1 + (7.49 + 2.43i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-7.69 + 10.5i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.837 - 2.57i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (2.80 - 2.03i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 0.846iT - 67T^{2} \) |
| 71 | \( 1 + (-11.9 + 8.70i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-11.9 + 3.89i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-2.85 - 2.07i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (4.04 + 5.56i)T + (-25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 11.0T + 89T^{2} \) |
| 97 | \( 1 + (0.957 - 1.31i)T + (-29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.804949541525934576390404483435, −8.817210319451733840267073862664, −8.055410825419503712761746239467, −7.51827997809292743124356635538, −6.74549277430126046452810004632, −5.47427583756933961350996549833, −4.71193332818318115891953440978, −3.73471339654240012694736066764, −2.21141183654995249351810203282, −0.44314903378999982974991487189,
1.22268092090938645615633179128, 2.85434099908813782925040047748, 3.51805054405298604860902125820, 4.89941652075530739751451299978, 5.49042174432190479015992068680, 7.19185856441069974442151584703, 7.87312402597486041260556336090, 8.158562979217137773874304860854, 9.468427647911209664937130927197, 10.08793613074984128514957155934