Properties

Label 990.2.ba.c.829.2
Level $990$
Weight $2$
Character 990.829
Analytic conductor $7.905$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(289,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.ba (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,2,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 829.2
Root \(-0.587785 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 990.829
Dual form 990.2.ba.c.289.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.587785 - 0.809017i) q^{2} +(-0.309017 - 0.951057i) q^{4} +(0.366554 + 2.20582i) q^{5} +(-1.17557 + 0.381966i) q^{7} +(-0.951057 - 0.309017i) q^{8} +(2.00000 + 1.00000i) q^{10} +(-2.80902 + 1.76336i) q^{11} +(-0.363271 + 0.500000i) q^{13} +(-0.381966 + 1.17557i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(0.951057 + 1.30902i) q^{17} +(-0.763932 + 2.35114i) q^{19} +(1.98459 - 1.03025i) q^{20} +(-0.224514 + 3.30902i) q^{22} +1.61803i q^{23} +(-4.73128 + 1.61710i) q^{25} +(0.190983 + 0.587785i) q^{26} +(0.726543 + 1.00000i) q^{28} +(2.19098 + 6.74315i) q^{29} +(-0.118034 - 0.0857567i) q^{31} +1.00000i q^{32} +1.61803 q^{34} +(-1.27346 - 2.45309i) q^{35} +(-6.06961 + 1.97214i) q^{37} +(1.45309 + 2.00000i) q^{38} +(0.333023 - 2.21113i) q^{40} +(-3.38197 + 10.4086i) q^{41} -9.61803i q^{43} +(2.54508 + 2.12663i) q^{44} +(1.30902 + 0.951057i) q^{46} +(6.01661 + 1.95492i) q^{47} +(-4.42705 + 3.21644i) q^{49} +(-1.47271 + 4.77819i) q^{50} +(0.587785 + 0.190983i) q^{52} +(3.97574 - 5.47214i) q^{53} +(-4.91930 - 5.54982i) q^{55} +1.23607 q^{56} +(6.74315 + 2.19098i) q^{58} +(2.20820 + 6.79615i) q^{59} +(-2.23607 + 1.62460i) q^{61} +(-0.138757 + 0.0450850i) q^{62} +(0.809017 + 0.587785i) q^{64} +(-1.23607 - 0.618034i) q^{65} -1.38197i q^{67} +(0.951057 - 1.30902i) q^{68} +(-2.73311 - 0.411638i) q^{70} +(1.38197 - 1.00406i) q^{71} +(7.77997 - 2.52786i) q^{73} +(-1.97214 + 6.06961i) q^{74} +2.47214 q^{76} +(2.62866 - 3.14590i) q^{77} +(-7.78115 - 5.65334i) q^{79} +(-1.59310 - 1.56909i) q^{80} +(6.43288 + 8.85410i) q^{82} +(1.62460 + 2.23607i) q^{83} +(-2.53884 + 2.57768i) q^{85} +(-7.78115 - 5.65334i) q^{86} +(3.21644 - 0.809017i) q^{88} +8.47214 q^{89} +(0.236068 - 0.726543i) q^{91} +(1.53884 - 0.500000i) q^{92} +(5.11803 - 3.71847i) q^{94} +(-5.46621 - 0.823277i) q^{95} +(-1.90211 + 2.61803i) q^{97} +5.47214i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} - 2 q^{5} + 16 q^{10} - 18 q^{11} - 12 q^{14} - 2 q^{16} - 24 q^{19} + 2 q^{20} + 6 q^{25} + 6 q^{26} + 22 q^{29} + 8 q^{31} + 4 q^{34} - 16 q^{35} + 4 q^{40} - 36 q^{41} - 2 q^{44} + 6 q^{46}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.587785 0.809017i 0.415627 0.572061i
\(3\) 0 0
\(4\) −0.309017 0.951057i −0.154508 0.475528i
\(5\) 0.366554 + 2.20582i 0.163928 + 0.986472i
\(6\) 0 0
\(7\) −1.17557 + 0.381966i −0.444324 + 0.144370i −0.522630 0.852560i \(-0.675049\pi\)
0.0783058 + 0.996929i \(0.475049\pi\)
\(8\) −0.951057 0.309017i −0.336249 0.109254i
\(9\) 0 0
\(10\) 2.00000 + 1.00000i 0.632456 + 0.316228i
\(11\) −2.80902 + 1.76336i −0.846950 + 0.531672i
\(12\) 0 0
\(13\) −0.363271 + 0.500000i −0.100753 + 0.138675i −0.856417 0.516285i \(-0.827315\pi\)
0.755664 + 0.654960i \(0.227315\pi\)
\(14\) −0.381966 + 1.17557i −0.102085 + 0.314184i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) 0.951057 + 1.30902i 0.230665 + 0.317483i 0.908623 0.417618i \(-0.137135\pi\)
−0.677958 + 0.735101i \(0.737135\pi\)
\(18\) 0 0
\(19\) −0.763932 + 2.35114i −0.175258 + 0.539389i −0.999645 0.0266376i \(-0.991520\pi\)
0.824387 + 0.566026i \(0.191520\pi\)
\(20\) 1.98459 1.03025i 0.443767 0.230371i
\(21\) 0 0
\(22\) −0.224514 + 3.30902i −0.0478665 + 0.705485i
\(23\) 1.61803i 0.337383i 0.985669 + 0.168692i \(0.0539542\pi\)
−0.985669 + 0.168692i \(0.946046\pi\)
\(24\) 0 0
\(25\) −4.73128 + 1.61710i −0.946255 + 0.323420i
\(26\) 0.190983 + 0.587785i 0.0374548 + 0.115274i
\(27\) 0 0
\(28\) 0.726543 + 1.00000i 0.137304 + 0.188982i
\(29\) 2.19098 + 6.74315i 0.406855 + 1.25217i 0.919336 + 0.393473i \(0.128727\pi\)
−0.512481 + 0.858699i \(0.671273\pi\)
\(30\) 0 0
\(31\) −0.118034 0.0857567i −0.0211995 0.0154024i 0.577135 0.816649i \(-0.304171\pi\)
−0.598335 + 0.801246i \(0.704171\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 1.61803 0.277491
\(35\) −1.27346 2.45309i −0.215254 0.414647i
\(36\) 0 0
\(37\) −6.06961 + 1.97214i −0.997838 + 0.324217i −0.762001 0.647576i \(-0.775783\pi\)
−0.235837 + 0.971793i \(0.575783\pi\)
\(38\) 1.45309 + 2.00000i 0.235722 + 0.324443i
\(39\) 0 0
\(40\) 0.333023 2.21113i 0.0526555 0.349610i
\(41\) −3.38197 + 10.4086i −0.528174 + 1.62555i 0.229778 + 0.973243i \(0.426200\pi\)
−0.757952 + 0.652310i \(0.773800\pi\)
\(42\) 0 0
\(43\) 9.61803i 1.46674i −0.679832 0.733368i \(-0.737947\pi\)
0.679832 0.733368i \(-0.262053\pi\)
\(44\) 2.54508 + 2.12663i 0.383686 + 0.320601i
\(45\) 0 0
\(46\) 1.30902 + 0.951057i 0.193004 + 0.140226i
\(47\) 6.01661 + 1.95492i 0.877613 + 0.285154i 0.712966 0.701199i \(-0.247352\pi\)
0.164647 + 0.986353i \(0.447352\pi\)
\(48\) 0 0
\(49\) −4.42705 + 3.21644i −0.632436 + 0.459492i
\(50\) −1.47271 + 4.77819i −0.208273 + 0.675738i
\(51\) 0 0
\(52\) 0.587785 + 0.190983i 0.0815111 + 0.0264846i
\(53\) 3.97574 5.47214i 0.546110 0.751656i −0.443368 0.896340i \(-0.646217\pi\)
0.989478 + 0.144684i \(0.0462165\pi\)
\(54\) 0 0
\(55\) −4.91930 5.54982i −0.663318 0.748338i
\(56\) 1.23607 0.165177
\(57\) 0 0
\(58\) 6.74315 + 2.19098i 0.885419 + 0.287690i
\(59\) 2.20820 + 6.79615i 0.287484 + 0.884784i 0.985643 + 0.168842i \(0.0540026\pi\)
−0.698160 + 0.715942i \(0.745997\pi\)
\(60\) 0 0
\(61\) −2.23607 + 1.62460i −0.286299 + 0.208009i −0.721660 0.692247i \(-0.756621\pi\)
0.435361 + 0.900256i \(0.356621\pi\)
\(62\) −0.138757 + 0.0450850i −0.0176222 + 0.00572580i
\(63\) 0 0
\(64\) 0.809017 + 0.587785i 0.101127 + 0.0734732i
\(65\) −1.23607 0.618034i −0.153315 0.0766577i
\(66\) 0 0
\(67\) 1.38197i 0.168834i −0.996431 0.0844170i \(-0.973097\pi\)
0.996431 0.0844170i \(-0.0269028\pi\)
\(68\) 0.951057 1.30902i 0.115333 0.158742i
\(69\) 0 0
\(70\) −2.73311 0.411638i −0.326669 0.0492002i
\(71\) 1.38197 1.00406i 0.164009 0.119160i −0.502753 0.864430i \(-0.667680\pi\)
0.666762 + 0.745270i \(0.267680\pi\)
\(72\) 0 0
\(73\) 7.77997 2.52786i 0.910576 0.295864i 0.183981 0.982930i \(-0.441102\pi\)
0.726595 + 0.687066i \(0.241102\pi\)
\(74\) −1.97214 + 6.06961i −0.229256 + 0.705578i
\(75\) 0 0
\(76\) 2.47214 0.283573
\(77\) 2.62866 3.14590i 0.299563 0.358508i
\(78\) 0 0
\(79\) −7.78115 5.65334i −0.875448 0.636050i 0.0565952 0.998397i \(-0.481976\pi\)
−0.932043 + 0.362347i \(0.881976\pi\)
\(80\) −1.59310 1.56909i −0.178114 0.175430i
\(81\) 0 0
\(82\) 6.43288 + 8.85410i 0.710393 + 0.977772i
\(83\) 1.62460 + 2.23607i 0.178323 + 0.245440i 0.888817 0.458263i \(-0.151528\pi\)
−0.710494 + 0.703704i \(0.751528\pi\)
\(84\) 0 0
\(85\) −2.53884 + 2.57768i −0.275376 + 0.279589i
\(86\) −7.78115 5.65334i −0.839063 0.609615i
\(87\) 0 0
\(88\) 3.21644 0.809017i 0.342874 0.0862415i
\(89\) 8.47214 0.898045 0.449022 0.893521i \(-0.351772\pi\)
0.449022 + 0.893521i \(0.351772\pi\)
\(90\) 0 0
\(91\) 0.236068 0.726543i 0.0247466 0.0761624i
\(92\) 1.53884 0.500000i 0.160435 0.0521286i
\(93\) 0 0
\(94\) 5.11803 3.71847i 0.527885 0.383531i
\(95\) −5.46621 0.823277i −0.560822 0.0844664i
\(96\) 0 0
\(97\) −1.90211 + 2.61803i −0.193130 + 0.265821i −0.894590 0.446888i \(-0.852532\pi\)
0.701459 + 0.712709i \(0.252532\pi\)
\(98\) 5.47214i 0.552769i
\(99\) 0 0
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) −0.690983 0.502029i −0.0687554 0.0499537i 0.552877 0.833263i \(-0.313530\pi\)
−0.621632 + 0.783309i \(0.713530\pi\)
\(102\) 0 0
\(103\) 16.5640 5.38197i 1.63210 0.530301i 0.657346 0.753589i \(-0.271679\pi\)
0.974752 + 0.223288i \(0.0716791\pi\)
\(104\) 0.500000 0.363271i 0.0490290 0.0356217i
\(105\) 0 0
\(106\) −2.09017 6.43288i −0.203015 0.624817i
\(107\) −16.8415 5.47214i −1.62813 0.529011i −0.654289 0.756244i \(-0.727032\pi\)
−0.973840 + 0.227233i \(0.927032\pi\)
\(108\) 0 0
\(109\) 12.9443 1.23984 0.619918 0.784666i \(-0.287166\pi\)
0.619918 + 0.784666i \(0.287166\pi\)
\(110\) −7.38139 + 0.717695i −0.703788 + 0.0684295i
\(111\) 0 0
\(112\) 0.726543 1.00000i 0.0686518 0.0944911i
\(113\) 9.37181 + 3.04508i 0.881626 + 0.286457i 0.714632 0.699501i \(-0.246594\pi\)
0.166993 + 0.985958i \(0.446594\pi\)
\(114\) 0 0
\(115\) −3.56909 + 0.593096i −0.332819 + 0.0553065i
\(116\) 5.73607 4.16750i 0.532581 0.386942i
\(117\) 0 0
\(118\) 6.79615 + 2.20820i 0.625637 + 0.203282i
\(119\) −1.61803 1.17557i −0.148325 0.107764i
\(120\) 0 0
\(121\) 4.78115 9.90659i 0.434650 0.900599i
\(122\) 2.76393i 0.250235i
\(123\) 0 0
\(124\) −0.0450850 + 0.138757i −0.00404875 + 0.0124608i
\(125\) −5.30130 9.84359i −0.474163 0.880437i
\(126\) 0 0
\(127\) −4.70228 6.47214i −0.417260 0.574309i 0.547710 0.836668i \(-0.315500\pi\)
−0.964970 + 0.262359i \(0.915500\pi\)
\(128\) 0.951057 0.309017i 0.0840623 0.0273135i
\(129\) 0 0
\(130\) −1.22654 + 0.636729i −0.107575 + 0.0558448i
\(131\) −3.85410 −0.336734 −0.168367 0.985724i \(-0.553849\pi\)
−0.168367 + 0.985724i \(0.553849\pi\)
\(132\) 0 0
\(133\) 3.05573i 0.264965i
\(134\) −1.11803 0.812299i −0.0965834 0.0701720i
\(135\) 0 0
\(136\) −0.500000 1.53884i −0.0428746 0.131955i
\(137\) 5.62058 + 7.73607i 0.480199 + 0.660937i 0.978543 0.206042i \(-0.0660585\pi\)
−0.498344 + 0.866979i \(0.666058\pi\)
\(138\) 0 0
\(139\) −2.09017 6.43288i −0.177286 0.545630i 0.822445 0.568845i \(-0.192610\pi\)
−0.999730 + 0.0232153i \(0.992610\pi\)
\(140\) −1.93950 + 1.96917i −0.163918 + 0.166426i
\(141\) 0 0
\(142\) 1.70820i 0.143349i
\(143\) 0.138757 2.04508i 0.0116035 0.171019i
\(144\) 0 0
\(145\) −14.0711 + 7.30464i −1.16854 + 0.606617i
\(146\) 2.52786 7.77997i 0.209208 0.643875i
\(147\) 0 0
\(148\) 3.75123 + 5.16312i 0.308349 + 0.424406i
\(149\) 5.78115 4.20025i 0.473611 0.344098i −0.325236 0.945633i \(-0.605444\pi\)
0.798847 + 0.601535i \(0.205444\pi\)
\(150\) 0 0
\(151\) −4.76393 + 14.6619i −0.387683 + 1.19317i 0.546832 + 0.837243i \(0.315834\pi\)
−0.934515 + 0.355924i \(0.884166\pi\)
\(152\) 1.45309 2.00000i 0.117861 0.162221i
\(153\) 0 0
\(154\) −1.00000 3.97574i −0.0805823 0.320374i
\(155\) 0.145898 0.291796i 0.0117188 0.0234376i
\(156\) 0 0
\(157\) −5.84510 1.89919i −0.466489 0.151572i 0.0663350 0.997797i \(-0.478869\pi\)
−0.532824 + 0.846226i \(0.678869\pi\)
\(158\) −9.14729 + 2.97214i −0.727720 + 0.236450i
\(159\) 0 0
\(160\) −2.20582 + 0.366554i −0.174385 + 0.0289786i
\(161\) −0.618034 1.90211i −0.0487079 0.149908i
\(162\) 0 0
\(163\) 11.9147 16.3992i 0.933232 1.28448i −0.0253536 0.999679i \(-0.508071\pi\)
0.958586 0.284805i \(-0.0919288\pi\)
\(164\) 10.9443 0.854604
\(165\) 0 0
\(166\) 2.76393 0.214523
\(167\) −5.34307 + 7.35410i −0.413459 + 0.569077i −0.964058 0.265692i \(-0.914399\pi\)
0.550599 + 0.834770i \(0.314399\pi\)
\(168\) 0 0
\(169\) 3.89919 + 12.0005i 0.299937 + 0.923113i
\(170\) 0.593096 + 3.56909i 0.0454884 + 0.273737i
\(171\) 0 0
\(172\) −9.14729 + 2.97214i −0.697475 + 0.226623i
\(173\) −18.4661 6.00000i −1.40395 0.456172i −0.493485 0.869754i \(-0.664277\pi\)
−0.910467 + 0.413583i \(0.864277\pi\)
\(174\) 0 0
\(175\) 4.94427 3.70820i 0.373752 0.280314i
\(176\) 1.23607 3.07768i 0.0931721 0.231989i
\(177\) 0 0
\(178\) 4.97980 6.85410i 0.373252 0.513737i
\(179\) 4.71885 14.5231i 0.352703 1.08551i −0.604626 0.796509i \(-0.706677\pi\)
0.957329 0.288999i \(-0.0933225\pi\)
\(180\) 0 0
\(181\) −16.0902 + 11.6902i −1.19597 + 0.868925i −0.993883 0.110442i \(-0.964773\pi\)
−0.202090 + 0.979367i \(0.564773\pi\)
\(182\) −0.449028 0.618034i −0.0332842 0.0458117i
\(183\) 0 0
\(184\) 0.500000 1.53884i 0.0368605 0.113445i
\(185\) −6.57501 12.6656i −0.483405 0.931191i
\(186\) 0 0
\(187\) −4.97980 2.00000i −0.364159 0.146254i
\(188\) 6.32624i 0.461388i
\(189\) 0 0
\(190\) −3.87901 + 3.93835i −0.281413 + 0.285718i
\(191\) −1.38197 4.25325i −0.0999956 0.307755i 0.888528 0.458823i \(-0.151729\pi\)
−0.988523 + 0.151068i \(0.951729\pi\)
\(192\) 0 0
\(193\) 4.14725 + 5.70820i 0.298526 + 0.410886i 0.931760 0.363075i \(-0.118273\pi\)
−0.633234 + 0.773960i \(0.718273\pi\)
\(194\) 1.00000 + 3.07768i 0.0717958 + 0.220965i
\(195\) 0 0
\(196\) 4.42705 + 3.21644i 0.316218 + 0.229746i
\(197\) 10.7639i 0.766898i −0.923562 0.383449i \(-0.874736\pi\)
0.923562 0.383449i \(-0.125264\pi\)
\(198\) 0 0
\(199\) −9.03444 −0.640435 −0.320217 0.947344i \(-0.603756\pi\)
−0.320217 + 0.947344i \(0.603756\pi\)
\(200\) 4.99942 0.0759100i 0.353513 0.00536765i
\(201\) 0 0
\(202\) −0.812299 + 0.263932i −0.0571532 + 0.0185702i
\(203\) −5.15131 7.09017i −0.361551 0.497632i
\(204\) 0 0
\(205\) −24.1992 3.64469i −1.69015 0.254556i
\(206\) 5.38197 16.5640i 0.374979 1.15407i
\(207\) 0 0
\(208\) 0.618034i 0.0428529i
\(209\) −2.00000 7.95148i −0.138343 0.550015i
\(210\) 0 0
\(211\) −9.85410 7.15942i −0.678384 0.492875i 0.194437 0.980915i \(-0.437712\pi\)
−0.872821 + 0.488040i \(0.837712\pi\)
\(212\) −6.43288 2.09017i −0.441812 0.143553i
\(213\) 0 0
\(214\) −14.3262 + 10.4086i −0.979321 + 0.711519i
\(215\) 21.2156 3.52552i 1.44689 0.240439i
\(216\) 0 0
\(217\) 0.171513 + 0.0557281i 0.0116431 + 0.00378307i
\(218\) 7.60845 10.4721i 0.515309 0.709263i
\(219\) 0 0
\(220\) −3.75804 + 6.39352i −0.253367 + 0.431051i
\(221\) −1.00000 −0.0672673
\(222\) 0 0
\(223\) 3.63271 + 1.18034i 0.243264 + 0.0790414i 0.428112 0.903726i \(-0.359179\pi\)
−0.184847 + 0.982767i \(0.559179\pi\)
\(224\) −0.381966 1.17557i −0.0255212 0.0785461i
\(225\) 0 0
\(226\) 7.97214 5.79210i 0.530299 0.385284i
\(227\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(228\) 0 0
\(229\) 15.8541 + 11.5187i 1.04767 + 0.761176i 0.971768 0.235940i \(-0.0758168\pi\)
0.0759008 + 0.997115i \(0.475817\pi\)
\(230\) −1.61803 + 3.23607i −0.106690 + 0.213380i
\(231\) 0 0
\(232\) 7.09017i 0.465492i
\(233\) −12.8455 + 17.6803i −0.841538 + 1.15828i 0.144126 + 0.989559i \(0.453963\pi\)
−0.985664 + 0.168718i \(0.946037\pi\)
\(234\) 0 0
\(235\) −2.10678 + 13.9881i −0.137431 + 0.912485i
\(236\) 5.78115 4.20025i 0.376321 0.273413i
\(237\) 0 0
\(238\) −1.90211 + 0.618034i −0.123296 + 0.0400612i
\(239\) −1.79837 + 5.53483i −0.116327 + 0.358018i −0.992222 0.124485i \(-0.960272\pi\)
0.875894 + 0.482503i \(0.160272\pi\)
\(240\) 0 0
\(241\) 14.9443 0.962645 0.481323 0.876544i \(-0.340157\pi\)
0.481323 + 0.876544i \(0.340157\pi\)
\(242\) −5.20431 9.69098i −0.334546 0.622960i
\(243\) 0 0
\(244\) 2.23607 + 1.62460i 0.143150 + 0.104004i
\(245\) −8.71764 8.58628i −0.556949 0.548557i
\(246\) 0 0
\(247\) −0.898056 1.23607i −0.0571419 0.0786491i
\(248\) 0.0857567 + 0.118034i 0.00544556 + 0.00749517i
\(249\) 0 0
\(250\) −11.0797 1.49707i −0.700739 0.0946833i
\(251\) 5.92705 + 4.30625i 0.374112 + 0.271808i 0.758914 0.651191i \(-0.225730\pi\)
−0.384802 + 0.922999i \(0.625730\pi\)
\(252\) 0 0
\(253\) −2.85317 4.54508i −0.179377 0.285747i
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 7.15942 2.32624i 0.446593 0.145107i −0.0770826 0.997025i \(-0.524561\pi\)
0.523675 + 0.851918i \(0.324561\pi\)
\(258\) 0 0
\(259\) 6.38197 4.63677i 0.396556 0.288115i
\(260\) −0.205819 + 1.36655i −0.0127644 + 0.0847501i
\(261\) 0 0
\(262\) −2.26538 + 3.11803i −0.139956 + 0.192633i
\(263\) 6.56231i 0.404649i 0.979319 + 0.202325i \(0.0648496\pi\)
−0.979319 + 0.202325i \(0.935150\pi\)
\(264\) 0 0
\(265\) 13.5279 + 6.76393i 0.831010 + 0.415505i
\(266\) −2.47214 1.79611i −0.151576 0.110127i
\(267\) 0 0
\(268\) −1.31433 + 0.427051i −0.0802853 + 0.0260863i
\(269\) 21.4443 15.5802i 1.30748 0.949940i 0.307482 0.951554i \(-0.400514\pi\)
0.999999 + 0.00161395i \(0.000513736\pi\)
\(270\) 0 0
\(271\) −5.20820 16.0292i −0.316376 0.973705i −0.975184 0.221394i \(-0.928939\pi\)
0.658809 0.752311i \(-0.271061\pi\)
\(272\) −1.53884 0.500000i −0.0933060 0.0303170i
\(273\) 0 0
\(274\) 9.56231 0.577680
\(275\) 10.4387 12.8854i 0.629478 0.777018i
\(276\) 0 0
\(277\) −17.5150 + 24.1074i −1.05238 + 1.44847i −0.165647 + 0.986185i \(0.552971\pi\)
−0.886730 + 0.462288i \(0.847029\pi\)
\(278\) −6.43288 2.09017i −0.385819 0.125360i
\(279\) 0 0
\(280\) 0.453085 + 2.72654i 0.0270770 + 0.162942i
\(281\) −4.23607 + 3.07768i −0.252703 + 0.183599i −0.706924 0.707290i \(-0.749918\pi\)
0.454221 + 0.890889i \(0.349918\pi\)
\(282\) 0 0
\(283\) 27.1114 + 8.80902i 1.61160 + 0.523642i 0.969940 0.243345i \(-0.0782446\pi\)
0.641664 + 0.766986i \(0.278245\pi\)
\(284\) −1.38197 1.00406i −0.0820046 0.0595798i
\(285\) 0 0
\(286\) −1.57295 1.31433i −0.0930104 0.0777178i
\(287\) 13.5279i 0.798525i
\(288\) 0 0
\(289\) 4.44427 13.6781i 0.261428 0.804592i
\(290\) −2.36119 + 15.6773i −0.138654 + 0.920602i
\(291\) 0 0
\(292\) −4.80828 6.61803i −0.281383 0.387291i
\(293\) 2.45714 0.798374i 0.143548 0.0466415i −0.236362 0.971665i \(-0.575955\pi\)
0.379910 + 0.925024i \(0.375955\pi\)
\(294\) 0 0
\(295\) −14.1817 + 7.36205i −0.825688 + 0.428635i
\(296\) 6.38197 0.370944
\(297\) 0 0
\(298\) 7.14590i 0.413951i
\(299\) −0.809017 0.587785i −0.0467867 0.0339925i
\(300\) 0 0
\(301\) 3.67376 + 11.3067i 0.211752 + 0.651706i
\(302\) 9.06154 + 12.4721i 0.521433 + 0.717691i
\(303\) 0 0
\(304\) −0.763932 2.35114i −0.0438145 0.134847i
\(305\) −4.40321 4.33686i −0.252127 0.248328i
\(306\) 0 0
\(307\) 9.74265i 0.556042i −0.960575 0.278021i \(-0.910321\pi\)
0.960575 0.278021i \(-0.0896785\pi\)
\(308\) −3.80423 1.52786i −0.216766 0.0870581i
\(309\) 0 0
\(310\) −0.150311 0.289547i −0.00853711 0.0164452i
\(311\) −6.14590 + 18.9151i −0.348502 + 1.07258i 0.611180 + 0.791491i \(0.290695\pi\)
−0.959682 + 0.281087i \(0.909305\pi\)
\(312\) 0 0
\(313\) 15.2169 + 20.9443i 0.860110 + 1.18384i 0.981543 + 0.191241i \(0.0612511\pi\)
−0.121433 + 0.992600i \(0.538749\pi\)
\(314\) −4.97214 + 3.61247i −0.280594 + 0.203863i
\(315\) 0 0
\(316\) −2.97214 + 9.14729i −0.167196 + 0.514575i
\(317\) −12.8658 + 17.7082i −0.722613 + 0.994592i 0.276820 + 0.960922i \(0.410720\pi\)
−0.999433 + 0.0336700i \(0.989280\pi\)
\(318\) 0 0
\(319\) −18.0451 15.0781i −1.01033 0.844214i
\(320\) −1.00000 + 2.00000i −0.0559017 + 0.111803i
\(321\) 0 0
\(322\) −1.90211 0.618034i −0.106001 0.0344417i
\(323\) −3.80423 + 1.23607i −0.211673 + 0.0687767i
\(324\) 0 0
\(325\) 0.910186 2.95309i 0.0504880 0.163808i
\(326\) −6.26393 19.2784i −0.346927 1.06773i
\(327\) 0 0
\(328\) 6.43288 8.85410i 0.355196 0.488886i
\(329\) −7.81966 −0.431112
\(330\) 0 0
\(331\) 26.4721 1.45504 0.727520 0.686086i \(-0.240673\pi\)
0.727520 + 0.686086i \(0.240673\pi\)
\(332\) 1.62460 2.23607i 0.0891614 0.122720i
\(333\) 0 0
\(334\) 2.80902 + 8.64527i 0.153703 + 0.473048i
\(335\) 3.04837 0.506564i 0.166550 0.0276766i
\(336\) 0 0
\(337\) −12.3107 + 4.00000i −0.670608 + 0.217894i −0.624479 0.781042i \(-0.714689\pi\)
−0.0461294 + 0.998935i \(0.514689\pi\)
\(338\) 12.0005 + 3.89919i 0.652739 + 0.212088i
\(339\) 0 0
\(340\) 3.23607 + 1.61803i 0.175500 + 0.0877502i
\(341\) 0.482779 + 0.0327561i 0.0261440 + 0.00177384i
\(342\) 0 0
\(343\) 9.06154 12.4721i 0.489277 0.673432i
\(344\) −2.97214 + 9.14729i −0.160247 + 0.493189i
\(345\) 0 0
\(346\) −15.7082 + 11.4127i −0.844478 + 0.613549i
\(347\) 4.25325 + 5.85410i 0.228327 + 0.314265i 0.907774 0.419460i \(-0.137780\pi\)
−0.679447 + 0.733724i \(0.737780\pi\)
\(348\) 0 0
\(349\) −0.0557281 + 0.171513i −0.00298306 + 0.00918090i −0.952537 0.304423i \(-0.901536\pi\)
0.949554 + 0.313604i \(0.101536\pi\)
\(350\) −0.0938299 6.17963i −0.00501542 0.330315i
\(351\) 0 0
\(352\) −1.76336 2.80902i −0.0939872 0.149721i
\(353\) 10.5623i 0.562175i −0.959682 0.281087i \(-0.909305\pi\)
0.959682 0.281087i \(-0.0906951\pi\)
\(354\) 0 0
\(355\) 2.72133 + 2.68033i 0.144433 + 0.142257i
\(356\) −2.61803 8.05748i −0.138756 0.427046i
\(357\) 0 0
\(358\) −8.97578 12.3541i −0.474385 0.652935i
\(359\) −5.27051 16.2210i −0.278167 0.856110i −0.988364 0.152107i \(-0.951394\pi\)
0.710197 0.704003i \(-0.248606\pi\)
\(360\) 0 0
\(361\) 10.4271 + 7.57570i 0.548792 + 0.398721i
\(362\) 19.8885i 1.04532i
\(363\) 0 0
\(364\) −0.763932 −0.0400409
\(365\) 8.42778 + 16.2346i 0.441130 + 0.849758i
\(366\) 0 0
\(367\) 27.0786 8.79837i 1.41349 0.459271i 0.499964 0.866046i \(-0.333347\pi\)
0.913528 + 0.406775i \(0.133347\pi\)
\(368\) −0.951057 1.30902i −0.0495772 0.0682372i
\(369\) 0 0
\(370\) −14.1114 2.12534i −0.733615 0.110491i
\(371\) −2.58359 + 7.95148i −0.134133 + 0.412820i
\(372\) 0 0
\(373\) 9.41641i 0.487563i 0.969830 + 0.243782i \(0.0783880\pi\)
−0.969830 + 0.243782i \(0.921612\pi\)
\(374\) −4.54508 + 2.85317i −0.235021 + 0.147534i
\(375\) 0 0
\(376\) −5.11803 3.71847i −0.263942 0.191765i
\(377\) −4.16750 1.35410i −0.214637 0.0697398i
\(378\) 0 0
\(379\) −26.4164 + 19.1926i −1.35692 + 0.985860i −0.358286 + 0.933612i \(0.616639\pi\)
−0.998634 + 0.0522478i \(0.983361\pi\)
\(380\) 0.906170 + 5.45309i 0.0464855 + 0.279737i
\(381\) 0 0
\(382\) −4.25325 1.38197i −0.217615 0.0707075i
\(383\) 10.6004 14.5902i 0.541654 0.745523i −0.447196 0.894436i \(-0.647577\pi\)
0.988850 + 0.148913i \(0.0475774\pi\)
\(384\) 0 0
\(385\) 7.90283 + 4.64520i 0.402765 + 0.236741i
\(386\) 7.05573 0.359127
\(387\) 0 0
\(388\) 3.07768 + 1.00000i 0.156246 + 0.0507673i
\(389\) −0.972136 2.99193i −0.0492892 0.151697i 0.923383 0.383881i \(-0.125413\pi\)
−0.972672 + 0.232184i \(0.925413\pi\)
\(390\) 0 0
\(391\) −2.11803 + 1.53884i −0.107114 + 0.0778226i
\(392\) 5.20431 1.69098i 0.262857 0.0854075i
\(393\) 0 0
\(394\) −8.70820 6.32688i −0.438713 0.318744i
\(395\) 9.61803 19.2361i 0.483936 0.967872i
\(396\) 0 0
\(397\) 5.61803i 0.281961i −0.990012 0.140981i \(-0.954975\pi\)
0.990012 0.140981i \(-0.0450255\pi\)
\(398\) −5.31031 + 7.30902i −0.266182 + 0.366368i
\(399\) 0 0
\(400\) 2.87718 4.08924i 0.143859 0.204462i
\(401\) −24.5623 + 17.8456i −1.22658 + 0.891165i −0.996629 0.0820368i \(-0.973857\pi\)
−0.229954 + 0.973202i \(0.573857\pi\)
\(402\) 0 0
\(403\) 0.0857567 0.0278640i 0.00427185 0.00138801i
\(404\) −0.263932 + 0.812299i −0.0131311 + 0.0404134i
\(405\) 0 0
\(406\) −8.76393 −0.434947
\(407\) 13.5721 16.2426i 0.672742 0.805118i
\(408\) 0 0
\(409\) −17.6803 12.8455i −0.874237 0.635170i 0.0574839 0.998346i \(-0.481692\pi\)
−0.931720 + 0.363176i \(0.881692\pi\)
\(410\) −17.1726 + 17.4353i −0.848092 + 0.861067i
\(411\) 0 0
\(412\) −10.2371 14.0902i −0.504346 0.694173i
\(413\) −5.19180 7.14590i −0.255472 0.351627i
\(414\) 0 0
\(415\) −4.33686 + 4.40321i −0.212888 + 0.216145i
\(416\) −0.500000 0.363271i −0.0245145 0.0178108i
\(417\) 0 0
\(418\) −7.60845 3.05573i −0.372142 0.149461i
\(419\) −34.5623 −1.68848 −0.844240 0.535966i \(-0.819948\pi\)
−0.844240 + 0.535966i \(0.819948\pi\)
\(420\) 0 0
\(421\) 2.03444 6.26137i 0.0991526 0.305160i −0.889161 0.457594i \(-0.848711\pi\)
0.988314 + 0.152434i \(0.0487112\pi\)
\(422\) −11.5842 + 3.76393i −0.563910 + 0.183225i
\(423\) 0 0
\(424\) −5.47214 + 3.97574i −0.265750 + 0.193079i
\(425\) −6.61653 4.65537i −0.320949 0.225818i
\(426\) 0 0
\(427\) 2.00811 2.76393i 0.0971795 0.133756i
\(428\) 17.7082i 0.855958i
\(429\) 0 0
\(430\) 9.61803 19.2361i 0.463823 0.927646i
\(431\) 29.8885 + 21.7153i 1.43968 + 1.04599i 0.988109 + 0.153754i \(0.0491364\pi\)
0.451571 + 0.892235i \(0.350864\pi\)
\(432\) 0 0
\(433\) 24.1724 7.85410i 1.16165 0.377444i 0.336132 0.941815i \(-0.390881\pi\)
0.825521 + 0.564371i \(0.190881\pi\)
\(434\) 0.145898 0.106001i 0.00700333 0.00508822i
\(435\) 0 0
\(436\) −4.00000 12.3107i −0.191565 0.589577i
\(437\) −3.80423 1.23607i −0.181981 0.0591292i
\(438\) 0 0
\(439\) 37.1591 1.77350 0.886752 0.462245i \(-0.152956\pi\)
0.886752 + 0.462245i \(0.152956\pi\)
\(440\) 2.96354 + 6.79834i 0.141281 + 0.324098i
\(441\) 0 0
\(442\) −0.587785 + 0.809017i −0.0279581 + 0.0384810i
\(443\) 38.1078 + 12.3820i 1.81055 + 0.588285i 0.999997 + 0.00262712i \(0.000836238\pi\)
0.810558 + 0.585658i \(0.199164\pi\)
\(444\) 0 0
\(445\) 3.10549 + 18.6880i 0.147214 + 0.885896i
\(446\) 3.09017 2.24514i 0.146324 0.106310i
\(447\) 0 0
\(448\) −1.17557 0.381966i −0.0555405 0.0180462i
\(449\) 10.1803 + 7.39645i 0.480440 + 0.349060i 0.801496 0.598000i \(-0.204038\pi\)
−0.321056 + 0.947060i \(0.604038\pi\)
\(450\) 0 0
\(451\) −8.85410 35.2016i −0.416923 1.65758i
\(452\) 9.85410i 0.463498i
\(453\) 0 0
\(454\) 0 0
\(455\) 1.68915 + 0.254407i 0.0791887 + 0.0119268i
\(456\) 0 0
\(457\) 18.0826 + 24.8885i 0.845868 + 1.16424i 0.984758 + 0.173929i \(0.0556464\pi\)
−0.138890 + 0.990308i \(0.544354\pi\)
\(458\) 18.6376 6.05573i 0.870879 0.282966i
\(459\) 0 0
\(460\) 1.66698 + 3.21113i 0.0777232 + 0.149720i
\(461\) −9.43769 −0.439557 −0.219779 0.975550i \(-0.570534\pi\)
−0.219779 + 0.975550i \(0.570534\pi\)
\(462\) 0 0
\(463\) 22.9443i 1.06631i −0.846017 0.533155i \(-0.821006\pi\)
0.846017 0.533155i \(-0.178994\pi\)
\(464\) −5.73607 4.16750i −0.266290 0.193471i
\(465\) 0 0
\(466\) 6.75329 + 20.7845i 0.312840 + 0.962823i
\(467\) 5.32282 + 7.32624i 0.246311 + 0.339018i 0.914215 0.405229i \(-0.132808\pi\)
−0.667904 + 0.744247i \(0.732808\pi\)
\(468\) 0 0
\(469\) 0.527864 + 1.62460i 0.0243745 + 0.0750170i
\(470\) 10.0783 + 9.92644i 0.464878 + 0.457873i
\(471\) 0 0
\(472\) 7.14590i 0.328917i
\(473\) 16.9600 + 27.0172i 0.779822 + 1.24225i
\(474\) 0 0
\(475\) −0.187660 12.3593i −0.00861042 0.567082i
\(476\) −0.618034 + 1.90211i −0.0283275 + 0.0871832i
\(477\) 0 0
\(478\) 3.42071 + 4.70820i 0.156460 + 0.215348i
\(479\) −25.0344 + 18.1886i −1.14385 + 0.831058i −0.987651 0.156667i \(-0.949925\pi\)
−0.156201 + 0.987725i \(0.549925\pi\)
\(480\) 0 0
\(481\) 1.21885 3.75123i 0.0555746 0.171041i
\(482\) 8.78402 12.0902i 0.400101 0.550692i
\(483\) 0 0
\(484\) −10.8992 1.48584i −0.495418 0.0675382i
\(485\) −6.47214 3.23607i −0.293885 0.146942i
\(486\) 0 0
\(487\) −1.17557 0.381966i −0.0532702 0.0173085i 0.282261 0.959338i \(-0.408916\pi\)
−0.335531 + 0.942029i \(0.608916\pi\)
\(488\) 2.62866 0.854102i 0.118994 0.0386634i
\(489\) 0 0
\(490\) −12.0705 + 2.00583i −0.545292 + 0.0906142i
\(491\) 12.0451 + 37.0710i 0.543587 + 1.67299i 0.724326 + 0.689458i \(0.242151\pi\)
−0.180739 + 0.983531i \(0.557849\pi\)
\(492\) 0 0
\(493\) −6.74315 + 9.28115i −0.303696 + 0.418002i
\(494\) −1.52786 −0.0687419
\(495\) 0 0
\(496\) 0.145898 0.00655102
\(497\) −1.24108 + 1.70820i −0.0556702 + 0.0766234i
\(498\) 0 0
\(499\) 5.09017 + 15.6659i 0.227867 + 0.701303i 0.997988 + 0.0634051i \(0.0201960\pi\)
−0.770121 + 0.637898i \(0.779804\pi\)
\(500\) −7.72362 + 8.08367i −0.345411 + 0.361513i
\(501\) 0 0
\(502\) 6.96767 2.26393i 0.310982 0.101044i
\(503\) −1.65735 0.538507i −0.0738978 0.0240108i 0.271835 0.962344i \(-0.412370\pi\)
−0.345733 + 0.938333i \(0.612370\pi\)
\(504\) 0 0
\(505\) 0.854102 1.70820i 0.0380070 0.0760141i
\(506\) −5.35410 0.363271i −0.238019 0.0161494i
\(507\) 0 0
\(508\) −4.70228 + 6.47214i −0.208630 + 0.287155i
\(509\) −0.392609 + 1.20833i −0.0174021 + 0.0535581i −0.959380 0.282115i \(-0.908964\pi\)
0.941978 + 0.335674i \(0.108964\pi\)
\(510\) 0 0
\(511\) −8.18034 + 5.94336i −0.361877 + 0.262919i
\(512\) −0.587785 0.809017i −0.0259767 0.0357538i
\(513\) 0 0
\(514\) 2.32624 7.15942i 0.102606 0.315789i
\(515\) 17.9432 + 34.5644i 0.790673 + 1.52309i
\(516\) 0 0
\(517\) −20.3480 + 5.11803i −0.894903 + 0.225091i
\(518\) 7.88854i 0.346603i
\(519\) 0 0
\(520\) 0.984587 + 0.969751i 0.0431770 + 0.0425264i
\(521\) 10.8197 + 33.2995i 0.474018 + 1.45888i 0.847278 + 0.531150i \(0.178240\pi\)
−0.373260 + 0.927727i \(0.621760\pi\)
\(522\) 0 0
\(523\) 6.71040 + 9.23607i 0.293425 + 0.403865i 0.930123 0.367248i \(-0.119700\pi\)
−0.636698 + 0.771113i \(0.719700\pi\)
\(524\) 1.19098 + 3.66547i 0.0520283 + 0.160127i
\(525\) 0 0
\(526\) 5.30902 + 3.85723i 0.231484 + 0.168183i
\(527\) 0.236068i 0.0102833i
\(528\) 0 0
\(529\) 20.3820 0.886172
\(530\) 13.4236 6.96853i 0.583085 0.302694i
\(531\) 0 0
\(532\) −2.90617 + 0.944272i −0.125998 + 0.0409394i
\(533\) −3.97574 5.47214i −0.172208 0.237025i
\(534\) 0 0
\(535\) 5.89723 39.1551i 0.254960 1.69282i
\(536\) −0.427051 + 1.31433i −0.0184458 + 0.0567703i
\(537\) 0 0
\(538\) 26.5066i 1.14278i
\(539\) 6.76393 16.8415i 0.291343 0.725415i
\(540\) 0 0
\(541\) 1.76393 + 1.28157i 0.0758374 + 0.0550991i 0.625058 0.780578i \(-0.285075\pi\)
−0.549221 + 0.835677i \(0.685075\pi\)
\(542\) −16.0292 5.20820i −0.688513 0.223712i
\(543\) 0 0
\(544\) −1.30902 + 0.951057i −0.0561236 + 0.0407762i
\(545\) 4.74477 + 28.5527i 0.203244 + 1.22306i
\(546\) 0 0
\(547\) 27.6664 + 8.98936i 1.18293 + 0.384357i 0.833454 0.552588i \(-0.186360\pi\)
0.349475 + 0.936946i \(0.386360\pi\)
\(548\) 5.62058 7.73607i 0.240099 0.330468i
\(549\) 0 0
\(550\) −4.28878 16.0189i −0.182874 0.683050i
\(551\) −17.5279 −0.746712
\(552\) 0 0
\(553\) 11.3067 + 3.67376i 0.480809 + 0.156224i
\(554\) 9.20820 + 28.3399i 0.391219 + 1.20405i
\(555\) 0 0
\(556\) −5.47214 + 3.97574i −0.232070 + 0.168609i
\(557\) 26.6296 8.65248i 1.12833 0.366617i 0.315390 0.948962i \(-0.397865\pi\)
0.812942 + 0.582345i \(0.197865\pi\)
\(558\) 0 0
\(559\) 4.80902 + 3.49396i 0.203400 + 0.147779i
\(560\) 2.47214 + 1.23607i 0.104467 + 0.0522334i
\(561\) 0 0
\(562\) 5.23607i 0.220870i
\(563\) −20.1967 + 27.7984i −0.851189 + 1.17156i 0.132410 + 0.991195i \(0.457728\pi\)
−0.983599 + 0.180367i \(0.942272\pi\)
\(564\) 0 0
\(565\) −3.28164 + 21.7887i −0.138060 + 0.916658i
\(566\) 23.0623 16.7557i 0.969381 0.704297i
\(567\) 0 0
\(568\) −1.62460 + 0.527864i −0.0681666 + 0.0221487i
\(569\) 0.618034 1.90211i 0.0259093 0.0797407i −0.937266 0.348616i \(-0.886652\pi\)
0.963175 + 0.268875i \(0.0866518\pi\)
\(570\) 0 0
\(571\) −0.583592 −0.0244226 −0.0122113 0.999925i \(-0.503887\pi\)
−0.0122113 + 0.999925i \(0.503887\pi\)
\(572\) −1.98787 + 0.500000i −0.0831170 + 0.0209061i
\(573\) 0 0
\(574\) −10.9443 7.95148i −0.456805 0.331888i
\(575\) −2.61653 7.65537i −0.109117 0.319251i
\(576\) 0 0
\(577\) 19.5357 + 26.8885i 0.813281 + 1.11938i 0.990809 + 0.135269i \(0.0431899\pi\)
−0.177528 + 0.984116i \(0.556810\pi\)
\(578\) −8.45351 11.6353i −0.351620 0.483963i
\(579\) 0 0
\(580\) 11.2953 + 11.1251i 0.469013 + 0.461945i
\(581\) −2.76393 2.00811i −0.114667 0.0833106i
\(582\) 0 0
\(583\) −1.51860 + 22.3820i −0.0628939 + 0.926966i
\(584\) −8.18034 −0.338505
\(585\) 0 0
\(586\) 0.798374 2.45714i 0.0329805 0.101504i
\(587\) 14.7679 4.79837i 0.609535 0.198050i 0.0120468 0.999927i \(-0.496165\pi\)
0.597489 + 0.801877i \(0.296165\pi\)
\(588\) 0 0
\(589\) 0.291796 0.212002i 0.0120232 0.00873540i
\(590\) −2.37975 + 15.8005i −0.0979726 + 0.650497i
\(591\) 0 0
\(592\) 3.75123 5.16312i 0.154174 0.212203i
\(593\) 26.5066i 1.08849i −0.838925 0.544247i \(-0.816815\pi\)
0.838925 0.544247i \(-0.183185\pi\)
\(594\) 0 0
\(595\) 2.00000 4.00000i 0.0819920 0.163984i
\(596\) −5.78115 4.20025i −0.236805 0.172049i
\(597\) 0 0
\(598\) −0.951057 + 0.309017i −0.0388916 + 0.0126366i
\(599\) −27.4164 + 19.9192i −1.12020 + 0.813876i −0.984240 0.176838i \(-0.943413\pi\)
−0.135964 + 0.990714i \(0.543413\pi\)
\(600\) 0 0
\(601\) −6.32624 19.4702i −0.258053 0.794204i −0.993213 0.116311i \(-0.962893\pi\)
0.735160 0.677893i \(-0.237107\pi\)
\(602\) 11.3067 + 3.67376i 0.460826 + 0.149731i
\(603\) 0 0
\(604\) 15.4164 0.627285
\(605\) 23.6047 + 6.91506i 0.959668 + 0.281137i
\(606\) 0 0
\(607\) 0.726543 1.00000i 0.0294895 0.0405887i −0.794018 0.607895i \(-0.792014\pi\)
0.823507 + 0.567306i \(0.192014\pi\)
\(608\) −2.35114 0.763932i −0.0953514 0.0309815i
\(609\) 0 0
\(610\) −6.09673 + 1.01313i −0.246850 + 0.0410204i
\(611\) −3.16312 + 2.29814i −0.127966 + 0.0929728i
\(612\) 0 0
\(613\) −35.5851 11.5623i −1.43727 0.466997i −0.516224 0.856453i \(-0.672663\pi\)
−0.921045 + 0.389456i \(0.872663\pi\)
\(614\) −7.88197 5.72658i −0.318090 0.231106i
\(615\) 0 0
\(616\) −3.47214 + 2.17963i −0.139896 + 0.0878197i
\(617\) 19.3050i 0.777188i 0.921409 + 0.388594i \(0.127039\pi\)
−0.921409 + 0.388594i \(0.872961\pi\)
\(618\) 0 0
\(619\) 11.3820 35.0301i 0.457480 1.40798i −0.410719 0.911762i \(-0.634722\pi\)
0.868199 0.496216i \(-0.165278\pi\)
\(620\) −0.322600 0.0485873i −0.0129559 0.00195131i
\(621\) 0 0
\(622\) 11.6902 + 16.0902i 0.468734 + 0.645157i
\(623\) −9.95959 + 3.23607i −0.399023 + 0.129650i
\(624\) 0 0
\(625\) 19.7700 15.3019i 0.790799 0.612076i
\(626\) 25.8885 1.03471
\(627\) 0 0
\(628\) 6.14590i 0.245248i
\(629\) −8.35410 6.06961i −0.333100 0.242011i
\(630\) 0 0
\(631\) 5.95492 + 18.3273i 0.237061 + 0.729600i 0.996841 + 0.0794196i \(0.0253067\pi\)
−0.759780 + 0.650180i \(0.774693\pi\)
\(632\) 5.65334 + 7.78115i 0.224878 + 0.309518i
\(633\) 0 0
\(634\) 6.76393 + 20.8172i 0.268630 + 0.826758i
\(635\) 12.5527 12.7448i 0.498140 0.505761i
\(636\) 0 0
\(637\) 3.38197i 0.133998i
\(638\) −22.8051 + 5.73607i −0.902863 + 0.227093i
\(639\) 0 0
\(640\) 1.03025 + 1.98459i 0.0407242 + 0.0784477i
\(641\) 0.145898 0.449028i 0.00576263 0.0177355i −0.948134 0.317871i \(-0.897032\pi\)
0.953896 + 0.300136i \(0.0970320\pi\)
\(642\) 0 0
\(643\) −9.49032 13.0623i −0.374262 0.515127i 0.579791 0.814765i \(-0.303134\pi\)
−0.954053 + 0.299638i \(0.903134\pi\)
\(644\) −1.61803 + 1.17557i −0.0637595 + 0.0463240i
\(645\) 0 0
\(646\) −1.23607 + 3.80423i −0.0486324 + 0.149675i
\(647\) −26.2336 + 36.1074i −1.03135 + 1.41953i −0.127417 + 0.991849i \(0.540669\pi\)
−0.903931 + 0.427679i \(0.859331\pi\)
\(648\) 0 0
\(649\) −18.1869 15.1967i −0.713899 0.596521i
\(650\) −1.85410 2.47214i −0.0727239 0.0969651i
\(651\) 0 0
\(652\) −19.2784 6.26393i −0.755000 0.245315i
\(653\) 3.69822 1.20163i 0.144723 0.0470233i −0.235760 0.971811i \(-0.575758\pi\)
0.380483 + 0.924788i \(0.375758\pi\)
\(654\) 0 0
\(655\) −1.41273 8.50145i −0.0552001 0.332179i
\(656\) −3.38197 10.4086i −0.132044 0.406388i
\(657\) 0 0
\(658\) −4.59628 + 6.32624i −0.179182 + 0.246622i
\(659\) −9.88854 −0.385203 −0.192601 0.981277i \(-0.561692\pi\)
−0.192601 + 0.981277i \(0.561692\pi\)
\(660\) 0 0
\(661\) 40.3607 1.56985 0.784924 0.619592i \(-0.212702\pi\)
0.784924 + 0.619592i \(0.212702\pi\)
\(662\) 15.5599 21.4164i 0.604754 0.832372i
\(663\) 0 0
\(664\) −0.854102 2.62866i −0.0331456 0.102012i
\(665\) 6.74038 1.12009i 0.261381 0.0434351i
\(666\) 0 0
\(667\) −10.9106 + 3.54508i −0.422462 + 0.137266i
\(668\) 8.64527 + 2.80902i 0.334495 + 0.108684i
\(669\) 0 0
\(670\) 1.38197 2.76393i 0.0533900 0.106780i
\(671\) 3.41641 8.50651i 0.131889 0.328390i
\(672\) 0 0
\(673\) −15.3229 + 21.0902i −0.590655 + 0.812966i −0.994813 0.101723i \(-0.967565\pi\)
0.404158 + 0.914689i \(0.367565\pi\)
\(674\) −4.00000 + 12.3107i −0.154074 + 0.474192i
\(675\) 0 0
\(676\) 10.2082 7.41669i 0.392623 0.285257i
\(677\) −13.1433 18.0902i −0.505137 0.695262i 0.477953 0.878386i \(-0.341379\pi\)
−0.983090 + 0.183124i \(0.941379\pi\)
\(678\) 0 0
\(679\) 1.23607 3.80423i 0.0474359 0.145993i
\(680\) 3.21113 1.66698i 0.123141 0.0639257i
\(681\) 0 0
\(682\) 0.310271 0.371323i 0.0118809 0.0142187i
\(683\) 20.0689i 0.767914i −0.923351 0.383957i \(-0.874561\pi\)
0.923351 0.383957i \(-0.125439\pi\)
\(684\) 0 0
\(685\) −15.0041 + 15.2337i −0.573278 + 0.582049i
\(686\) −4.76393 14.6619i −0.181888 0.559793i
\(687\) 0 0
\(688\) 5.65334 + 7.78115i 0.215532 + 0.296654i
\(689\) 1.29180 + 3.97574i 0.0492135 + 0.151464i
\(690\) 0 0
\(691\) −14.0344 10.1966i −0.533895 0.387898i 0.287918 0.957655i \(-0.407037\pi\)
−0.821813 + 0.569758i \(0.807037\pi\)
\(692\) 19.4164i 0.738101i
\(693\) 0 0
\(694\) 7.23607 0.274677
\(695\) 13.4236 6.96853i 0.509187 0.264332i
\(696\) 0 0
\(697\) −16.8415 + 5.47214i −0.637917 + 0.207272i
\(698\) 0.106001 + 0.145898i 0.00401220 + 0.00552232i
\(699\) 0 0
\(700\) −5.05458 3.55638i −0.191045 0.134419i
\(701\) −8.03444 + 24.7275i −0.303457 + 0.933944i 0.676792 + 0.736174i \(0.263370\pi\)
−0.980249 + 0.197769i \(0.936630\pi\)
\(702\) 0 0
\(703\) 15.7771i 0.595044i
\(704\) −3.30902 0.224514i −0.124713 0.00846169i
\(705\) 0 0
\(706\) −8.54508 6.20837i −0.321599 0.233655i
\(707\) 1.00406 + 0.326238i 0.0377615 + 0.0122694i
\(708\) 0 0
\(709\) −36.8885 + 26.8011i −1.38538 + 1.00654i −0.389024 + 0.921228i \(0.627188\pi\)
−0.996355 + 0.0853086i \(0.972812\pi\)
\(710\) 3.76799 0.626148i 0.141410 0.0234989i
\(711\) 0 0
\(712\) −8.05748 2.61803i −0.301967 0.0981150i
\(713\) 0.138757 0.190983i 0.00519650 0.00715237i
\(714\) 0 0
\(715\) 4.56195 0.443560i 0.170607 0.0165882i
\(716\) −15.2705 −0.570686
\(717\) 0 0
\(718\) −16.2210 5.27051i −0.605361 0.196694i
\(719\) −8.61803 26.5236i −0.321398 0.989163i −0.973040 0.230636i \(-0.925919\pi\)
0.651642 0.758527i \(-0.274081\pi\)
\(720\) 0 0
\(721\) −17.4164 + 12.6538i −0.648621 + 0.471251i
\(722\) 12.2577 3.98278i 0.456186 0.148224i
\(723\) 0 0
\(724\) 16.0902 + 11.6902i 0.597986 + 0.434463i
\(725\) −21.2705 28.3607i −0.789967 1.05329i
\(726\) 0 0
\(727\) 2.18034i 0.0808643i 0.999182 + 0.0404322i \(0.0128735\pi\)
−0.999182 + 0.0404322i \(0.987127\pi\)
\(728\) −0.449028 + 0.618034i −0.0166421 + 0.0229059i
\(729\) 0 0
\(730\) 18.0878 + 2.72424i 0.669459 + 0.100829i
\(731\) 12.5902 9.14729i 0.465664 0.338325i
\(732\) 0 0
\(733\) −42.1038 + 13.6803i −1.55514 + 0.505295i −0.955504 0.294979i \(-0.904687\pi\)
−0.599634 + 0.800274i \(0.704687\pi\)
\(734\) 8.79837 27.0786i 0.324754 0.999490i
\(735\) 0 0
\(736\) −1.61803 −0.0596415
\(737\) 2.43690 + 3.88197i 0.0897643 + 0.142994i
\(738\) 0 0
\(739\) 17.4721 + 12.6942i 0.642723 + 0.466966i 0.860785 0.508969i \(-0.169973\pi\)
−0.218062 + 0.975935i \(0.569973\pi\)
\(740\) −10.0139 + 10.1671i −0.368118 + 0.373749i
\(741\) 0 0
\(742\) 4.91428 + 6.76393i 0.180409 + 0.248312i
\(743\) −16.5842 22.8262i −0.608416 0.837413i 0.388030 0.921647i \(-0.373156\pi\)
−0.996446 + 0.0842335i \(0.973156\pi\)
\(744\) 0 0
\(745\) 11.3841 + 11.2126i 0.417081 + 0.410796i
\(746\) 7.61803 + 5.53483i 0.278916 + 0.202644i
\(747\) 0 0
\(748\) −0.363271 + 5.35410i −0.0132825 + 0.195765i
\(749\) 21.8885 0.799790
\(750\) 0 0
\(751\) −10.5000 + 32.3157i −0.383150 + 1.17922i 0.554663 + 0.832075i \(0.312847\pi\)
−0.937813 + 0.347141i \(0.887153\pi\)
\(752\) −6.01661 + 1.95492i −0.219403 + 0.0712884i
\(753\) 0 0
\(754\) −3.54508 + 2.57565i −0.129104 + 0.0937998i
\(755\) −34.0877 5.13401i −1.24058 0.186846i
\(756\) 0 0
\(757\) 12.1595 16.7361i 0.441943 0.608283i −0.528699 0.848809i \(-0.677320\pi\)
0.970643 + 0.240526i \(0.0773201\pi\)
\(758\) 32.6525i 1.18599i
\(759\) 0 0
\(760\) 4.94427 + 2.47214i 0.179348 + 0.0896738i
\(761\) 1.23607 + 0.898056i 0.0448074 + 0.0325545i 0.609964 0.792429i \(-0.291184\pi\)
−0.565156 + 0.824984i \(0.691184\pi\)
\(762\) 0 0
\(763\) −15.2169 + 4.94427i −0.550889 + 0.178995i
\(764\) −3.61803 + 2.62866i −0.130896 + 0.0951014i
\(765\) 0 0
\(766\) −5.57295 17.1518i −0.201359 0.619719i
\(767\) −4.20025 1.36475i −0.151662 0.0492781i
\(768\) 0 0
\(769\) 13.0344 0.470034 0.235017 0.971991i \(-0.424485\pi\)
0.235017 + 0.971991i \(0.424485\pi\)
\(770\) 8.40321 3.66314i 0.302831 0.132010i
\(771\) 0 0
\(772\) 4.14725 5.70820i 0.149263 0.205443i
\(773\) 41.1199 + 13.3607i 1.47898 + 0.480550i 0.933808 0.357773i \(-0.116464\pi\)
0.545173 + 0.838323i \(0.316464\pi\)
\(774\) 0 0
\(775\) 0.697129 + 0.214866i 0.0250416 + 0.00771821i
\(776\) 2.61803 1.90211i 0.0939819 0.0682819i
\(777\) 0 0
\(778\) −2.99193 0.972136i −0.107266 0.0348528i
\(779\) −21.8885 15.9030i −0.784238 0.569783i
\(780\) 0 0
\(781\) −2.11146 + 5.25731i −0.0755538 + 0.188121i
\(782\) 2.61803i 0.0936207i
\(783\) 0 0
\(784\) 1.69098 5.20431i 0.0603923 0.185868i
\(785\) 2.04672 13.5894i 0.0730507 0.485026i
\(786\) 0 0
\(787\) −29.2707 40.2877i −1.04339 1.43610i −0.894402 0.447263i \(-0.852399\pi\)
−0.148987 0.988839i \(-0.547601\pi\)
\(788\) −10.2371 + 3.32624i −0.364682 + 0.118492i
\(789\) 0 0
\(790\) −9.90897 19.0878i −0.352545 0.679115i
\(791\) −12.1803 −0.433083
\(792\) 0 0
\(793\) 1.70820i 0.0606601i
\(794\) −4.54508 3.30220i −0.161299 0.117191i
\(795\) 0 0
\(796\) 2.79180 + 8.59226i 0.0989526 + 0.304545i
\(797\) 1.79611 + 2.47214i 0.0636215 + 0.0875675i 0.839642 0.543140i \(-0.182765\pi\)
−0.776021 + 0.630708i \(0.782765\pi\)
\(798\) 0 0
\(799\) 3.16312 + 9.73508i 0.111903 + 0.344402i
\(800\) −1.61710 4.73128i −0.0571732 0.167276i
\(801\) 0 0
\(802\) 30.3607i 1.07207i
\(803\) −17.3965 + 20.8197i −0.613910 + 0.734710i
\(804\) 0 0
\(805\) 3.96917 2.06050i 0.139895 0.0726230i
\(806\) 0.0278640 0.0857567i 0.000981469 0.00302065i
\(807\) 0 0
\(808\) 0.502029 + 0.690983i 0.0176613 + 0.0243087i
\(809\) 33.2705 24.1724i 1.16973 0.849858i 0.178752 0.983894i \(-0.442794\pi\)
0.990976 + 0.134036i \(0.0427939\pi\)
\(810\) 0 0
\(811\) −5.20163 + 16.0090i −0.182654 + 0.562151i −0.999900 0.0141380i \(-0.995500\pi\)
0.817246 + 0.576289i \(0.195500\pi\)
\(812\) −5.15131 + 7.09017i −0.180776 + 0.248816i
\(813\) 0 0
\(814\) −5.16312 20.5272i −0.180967 0.719479i
\(815\) 40.5410 + 20.2705i 1.42009 + 0.710045i
\(816\) 0 0
\(817\) 22.6134 + 7.34752i 0.791141 + 0.257057i
\(818\) −20.7845 + 6.75329i −0.726713 + 0.236123i
\(819\) 0 0
\(820\) 4.01166 + 24.1411i 0.140093 + 0.843043i
\(821\) −8.61803 26.5236i −0.300771 0.925679i −0.981221 0.192885i \(-0.938216\pi\)
0.680450 0.732795i \(-0.261784\pi\)
\(822\) 0 0
\(823\) −20.0252 + 27.5623i −0.698034 + 0.960762i 0.301938 + 0.953327i \(0.402366\pi\)
−0.999972 + 0.00743409i \(0.997634\pi\)
\(824\) −17.4164 −0.606729
\(825\) 0 0
\(826\) −8.83282 −0.307333
\(827\) 17.9516 24.7082i 0.624237 0.859188i −0.373416 0.927664i \(-0.621814\pi\)
0.997653 + 0.0684756i \(0.0218135\pi\)
\(828\) 0 0
\(829\) 3.03444 + 9.33905i 0.105391 + 0.324359i 0.989822 0.142312i \(-0.0454535\pi\)
−0.884431 + 0.466670i \(0.845453\pi\)
\(830\) 1.01313 + 6.09673i 0.0351662 + 0.211621i
\(831\) 0 0
\(832\) −0.587785 + 0.190983i −0.0203778 + 0.00662114i
\(833\) −8.42075 2.73607i −0.291762 0.0947991i
\(834\) 0 0
\(835\) −18.1803 9.09017i −0.629157 0.314578i
\(836\) −6.94427 + 4.35926i −0.240173 + 0.150768i
\(837\) 0 0
\(838\) −20.3152 + 27.9615i −0.701777 + 0.965914i
\(839\) 6.38197 19.6417i 0.220330 0.678106i −0.778402 0.627766i \(-0.783970\pi\)
0.998732 0.0503399i \(-0.0160305\pi\)
\(840\) 0 0
\(841\) −17.2082 + 12.5025i −0.593386 + 0.431120i
\(842\) −3.86974 5.32624i −0.133360 0.183554i
\(843\) 0 0
\(844\) −3.76393 + 11.5842i −0.129560 + 0.398744i
\(845\) −25.0416 + 12.9997i −0.861457 + 0.447204i
\(846\) 0 0
\(847\) −1.83660 + 13.4721i −0.0631063 + 0.462908i
\(848\) 6.76393i 0.232274i
\(849\) 0 0
\(850\) −7.65537 + 2.61653i −0.262577 + 0.0897461i
\(851\) −3.19098 9.82084i −0.109385 0.336654i
\(852\) 0 0
\(853\) −15.2824 21.0344i −0.523260 0.720206i 0.462825 0.886450i \(-0.346836\pi\)
−0.986085 + 0.166244i \(0.946836\pi\)
\(854\) −1.05573 3.24920i −0.0361263 0.111185i
\(855\) 0 0
\(856\) 14.3262 + 10.4086i 0.489661 + 0.355759i
\(857\) 32.4508i 1.10850i −0.832350 0.554250i \(-0.813005\pi\)
0.832350 0.554250i \(-0.186995\pi\)
\(858\) 0 0
\(859\) −18.7639 −0.640217 −0.320109 0.947381i \(-0.603719\pi\)
−0.320109 + 0.947381i \(0.603719\pi\)
\(860\) −9.90897 19.0878i −0.337893 0.650890i
\(861\) 0 0
\(862\) 35.1361 11.4164i 1.19674 0.388844i
\(863\) −31.1729 42.9058i −1.06114 1.46053i −0.878738 0.477305i \(-0.841614\pi\)
−0.182399 0.983225i \(-0.558386\pi\)
\(864\) 0 0
\(865\) 6.46610 42.9322i 0.219854 1.45974i
\(866\) 7.85410 24.1724i 0.266893 0.821413i
\(867\) 0 0
\(868\) 0.180340i 0.00612113i
\(869\) 31.8262 + 2.15938i 1.07963 + 0.0732521i
\(870\) 0 0
\(871\) 0.690983 + 0.502029i 0.0234131 + 0.0170106i
\(872\) −12.3107 4.00000i −0.416894 0.135457i
\(873\) 0 0
\(874\) −3.23607 + 2.35114i −0.109462 + 0.0795285i
\(875\) 9.99197 + 9.54691i 0.337790 + 0.322745i
\(876\) 0 0
\(877\) −38.6426 12.5557i −1.30487 0.423977i −0.427595 0.903971i \(-0.640639\pi\)
−0.877272 + 0.479994i \(0.840639\pi\)
\(878\) 21.8415 30.0623i 0.737116 1.01455i
\(879\) 0 0
\(880\) 7.24190 + 1.59841i 0.244124 + 0.0538823i
\(881\) 20.6525 0.695800 0.347900 0.937532i \(-0.386895\pi\)
0.347900 + 0.937532i \(0.386895\pi\)
\(882\) 0 0
\(883\) −36.6749 11.9164i −1.23421 0.401019i −0.381972 0.924174i \(-0.624755\pi\)
−0.852238 + 0.523155i \(0.824755\pi\)
\(884\) 0.309017 + 0.951057i 0.0103934 + 0.0319875i
\(885\) 0 0
\(886\) 32.4164 23.5519i 1.08905 0.791242i
\(887\) −50.0552 + 16.2639i −1.68069 + 0.546089i −0.985045 0.172296i \(-0.944881\pi\)
−0.695645 + 0.718386i \(0.744881\pi\)
\(888\) 0 0
\(889\) 8.00000 + 5.81234i 0.268311 + 0.194940i
\(890\) 16.9443 + 8.47214i 0.567973 + 0.283987i
\(891\) 0 0
\(892\) 3.81966i 0.127892i
\(893\) −9.19256 + 12.6525i −0.307617 + 0.423399i
\(894\) 0 0
\(895\) 33.7651 + 5.08542i 1.12864 + 0.169987i
\(896\) −1.00000 + 0.726543i −0.0334077 + 0.0242721i
\(897\) 0 0
\(898\) 11.9677 3.88854i 0.399368 0.129762i
\(899\) 0.319660 0.983813i 0.0106613 0.0328120i
\(900\) 0 0
\(901\) 10.9443 0.364607
\(902\) −33.6830 13.5279i −1.12152 0.450429i
\(903\) 0 0
\(904\) −7.97214 5.79210i −0.265149 0.192642i
\(905\) −31.6844 31.2069i −1.05322 1.03735i
\(906\) 0 0
\(907\) 22.5604 + 31.0517i 0.749104 + 1.03105i 0.998043 + 0.0625343i \(0.0199183\pi\)
−0.248939 + 0.968519i \(0.580082\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 1.19868 1.21702i 0.0397358 0.0403437i
\(911\) 15.8541 + 11.5187i 0.525270 + 0.381631i 0.818585 0.574385i \(-0.194759\pi\)
−0.293316 + 0.956016i \(0.594759\pi\)
\(912\) 0 0
\(913\) −8.50651 3.41641i −0.281524 0.113067i
\(914\) 30.7639 1.01758
\(915\) 0 0
\(916\) 6.05573 18.6376i 0.200087 0.615804i
\(917\) 4.53077 1.47214i 0.149619 0.0486142i
\(918\) 0 0
\(919\) 17.3090 12.5757i 0.570972 0.414835i −0.264486 0.964389i \(-0.585202\pi\)
0.835458 + 0.549554i \(0.185202\pi\)
\(920\) 3.57768 + 0.538842i 0.117953 + 0.0177651i
\(921\) 0 0
\(922\) −5.54734 + 7.63525i −0.182692 + 0.251454i
\(923\) 1.05573i 0.0347497i
\(924\) 0 0
\(925\) 25.5279 19.1459i 0.839351 0.629513i
\(926\) −18.5623 13.4863i −0.609995 0.443187i
\(927\) 0 0
\(928\) −6.74315 + 2.19098i −0.221355 + 0.0719225i
\(929\) 16.7984 12.2047i 0.551137 0.400424i −0.277068 0.960850i \(-0.589363\pi\)
0.828204 + 0.560426i \(0.189363\pi\)
\(930\) 0 0
\(931\) −4.18034 12.8658i −0.137005 0.421658i
\(932\) 20.7845 + 6.75329i 0.680818 + 0.221211i
\(933\) 0 0
\(934\) 9.05573 0.296312
\(935\) 2.58628 11.7176i 0.0845803 0.383208i
\(936\) 0 0
\(937\) 31.9524 43.9787i 1.04384 1.43672i 0.149810 0.988715i \(-0.452134\pi\)
0.894030 0.448007i \(-0.147866\pi\)
\(938\) 1.62460 + 0.527864i 0.0530450 + 0.0172354i
\(939\) 0 0
\(940\) 13.9545 2.31890i 0.455147 0.0756343i
\(941\) −3.02786 + 2.19987i −0.0987055 + 0.0717138i −0.636043 0.771653i \(-0.719430\pi\)
0.537338 + 0.843367i \(0.319430\pi\)
\(942\) 0 0
\(943\) −16.8415 5.47214i −0.548435 0.178197i
\(944\) −5.78115 4.20025i −0.188161 0.136707i
\(945\) 0 0
\(946\) 31.8262 + 2.15938i 1.03476 + 0.0702076i
\(947\) 3.12461i 0.101536i 0.998710 + 0.0507681i \(0.0161669\pi\)
−0.998710 + 0.0507681i \(0.983833\pi\)
\(948\) 0 0
\(949\) −1.56231 + 4.80828i −0.0507146 + 0.156083i
\(950\) −10.1092 7.11277i −0.327984 0.230769i
\(951\) 0 0
\(952\) 1.17557 + 1.61803i 0.0381005 + 0.0524408i
\(953\) 26.5033 8.61146i 0.858527 0.278952i 0.153514 0.988146i \(-0.450941\pi\)
0.705013 + 0.709194i \(0.250941\pi\)
\(954\) 0 0
\(955\) 8.87535 4.60741i 0.287199 0.149092i
\(956\) 5.81966 0.188221
\(957\) 0 0
\(958\) 30.9443i 0.999764i
\(959\) −9.56231 6.94742i −0.308783 0.224344i
\(960\) 0 0
\(961\) −9.57295 29.4625i −0.308805 0.950403i
\(962\) −2.31838 3.19098i −0.0747477 0.102881i
\(963\) 0 0
\(964\) −4.61803 14.2128i −0.148737 0.457765i
\(965\) −11.0711 + 11.2405i −0.356391 + 0.361843i
\(966\) 0 0
\(967\) 26.2918i 0.845487i −0.906249 0.422744i \(-0.861067\pi\)
0.906249 0.422744i \(-0.138933\pi\)
\(968\) −7.60845 + 7.94427i −0.244545 + 0.255339i
\(969\) 0 0
\(970\) −6.42226 + 3.33395i −0.206206 + 0.107047i
\(971\) 11.4164 35.1361i 0.366370 1.12757i −0.582749 0.812652i \(-0.698023\pi\)
0.949119 0.314918i \(-0.101977\pi\)
\(972\) 0 0
\(973\) 4.91428 + 6.76393i 0.157545 + 0.216842i
\(974\) −1.00000 + 0.726543i −0.0320421 + 0.0232799i
\(975\) 0 0
\(976\) 0.854102 2.62866i 0.0273391 0.0841412i
\(977\) −7.88597 + 10.8541i −0.252294 + 0.347253i −0.916313 0.400462i \(-0.868849\pi\)
0.664019 + 0.747716i \(0.268849\pi\)
\(978\) 0 0
\(979\) −23.7984 + 14.9394i −0.760599 + 0.477465i
\(980\) −5.47214 + 10.9443i −0.174801 + 0.349602i
\(981\) 0 0
\(982\) 37.0710 + 12.0451i 1.18298 + 0.384374i
\(983\) 26.4176 8.58359i 0.842590 0.273774i 0.144251 0.989541i \(-0.453923\pi\)
0.698339 + 0.715767i \(0.253923\pi\)
\(984\) 0 0
\(985\) 23.7433 3.94556i 0.756524 0.125716i
\(986\) 3.54508 + 10.9106i 0.112899 + 0.347466i
\(987\) 0 0
\(988\) −0.898056 + 1.23607i −0.0285710 + 0.0393246i
\(989\) 15.5623 0.494853
\(990\) 0 0
\(991\) −5.03444 −0.159924 −0.0799622 0.996798i \(-0.525480\pi\)
−0.0799622 + 0.996798i \(0.525480\pi\)
\(992\) 0.0857567 0.118034i 0.00272278 0.00374758i
\(993\) 0 0
\(994\) 0.652476 + 2.00811i 0.0206953 + 0.0636935i
\(995\) −3.31161 19.9283i −0.104985 0.631771i
\(996\) 0 0
\(997\) 21.6295 7.02786i 0.685014 0.222575i 0.0542250 0.998529i \(-0.482731\pi\)
0.630789 + 0.775954i \(0.282731\pi\)
\(998\) 15.6659 + 5.09017i 0.495896 + 0.161127i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.ba.c.829.2 yes 8
3.2 odd 2 990.2.ba.e.829.1 yes 8
5.4 even 2 inner 990.2.ba.c.829.1 yes 8
11.3 even 5 inner 990.2.ba.c.289.1 8
15.14 odd 2 990.2.ba.e.829.2 yes 8
33.14 odd 10 990.2.ba.e.289.2 yes 8
55.14 even 10 inner 990.2.ba.c.289.2 yes 8
165.14 odd 10 990.2.ba.e.289.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.ba.c.289.1 8 11.3 even 5 inner
990.2.ba.c.289.2 yes 8 55.14 even 10 inner
990.2.ba.c.829.1 yes 8 5.4 even 2 inner
990.2.ba.c.829.2 yes 8 1.1 even 1 trivial
990.2.ba.e.289.1 yes 8 165.14 odd 10
990.2.ba.e.289.2 yes 8 33.14 odd 10
990.2.ba.e.829.1 yes 8 3.2 odd 2
990.2.ba.e.829.2 yes 8 15.14 odd 2