Properties

Label 990.2.ba.c
Level $990$
Weight $2$
Character orbit 990.ba
Analytic conductor $7.905$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(289,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.ba (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,2,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{20}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{20}^{7} - \zeta_{20}^{5} + \cdots - \zeta_{20}) q^{2} + ( - \zeta_{20}^{6} + \zeta_{20}^{4} + \cdots + 1) q^{4} + ( - \zeta_{20}^{6} - 2 \zeta_{20}) q^{5} + (2 \zeta_{20}^{5} + 2 \zeta_{20}) q^{7}+ \cdots + ( - 4 \zeta_{20}^{7} + \cdots - 4 \zeta_{20}^{3}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} - 2 q^{5} + 16 q^{10} - 18 q^{11} - 12 q^{14} - 2 q^{16} - 24 q^{19} + 2 q^{20} + 6 q^{25} + 6 q^{26} + 22 q^{29} + 8 q^{31} + 4 q^{34} - 16 q^{35} + 4 q^{40} - 36 q^{41} - 2 q^{44} + 6 q^{46}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-1\) \(-1 + \zeta_{20}^{2} - \zeta_{20}^{4} + \zeta_{20}^{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
0.587785 0.809017i
−0.587785 + 0.809017i
0.951057 + 0.309017i
−0.951057 0.309017i
0.951057 0.309017i
−0.951057 + 0.309017i
0.587785 + 0.809017i
−0.587785 0.809017i
−0.587785 0.809017i 0 −0.309017 + 0.951057i −1.98459 + 1.03025i 0 1.17557 + 0.381966i 0.951057 0.309017i 0 2.00000 + 1.00000i
289.2 0.587785 + 0.809017i 0 −0.309017 + 0.951057i 0.366554 2.20582i 0 −1.17557 0.381966i −0.951057 + 0.309017i 0 2.00000 1.00000i
379.1 −0.951057 + 0.309017i 0 0.809017 0.587785i −1.59310 1.56909i 0 1.90211 + 2.61803i −0.587785 + 0.809017i 0 2.00000 + 1.00000i
379.2 0.951057 0.309017i 0 0.809017 0.587785i 2.21113 0.333023i 0 −1.90211 2.61803i 0.587785 0.809017i 0 2.00000 1.00000i
559.1 −0.951057 0.309017i 0 0.809017 + 0.587785i −1.59310 + 1.56909i 0 1.90211 2.61803i −0.587785 0.809017i 0 2.00000 1.00000i
559.2 0.951057 + 0.309017i 0 0.809017 + 0.587785i 2.21113 + 0.333023i 0 −1.90211 + 2.61803i 0.587785 + 0.809017i 0 2.00000 + 1.00000i
829.1 −0.587785 + 0.809017i 0 −0.309017 0.951057i −1.98459 1.03025i 0 1.17557 0.381966i 0.951057 + 0.309017i 0 2.00000 1.00000i
829.2 0.587785 0.809017i 0 −0.309017 0.951057i 0.366554 + 2.20582i 0 −1.17557 + 0.381966i −0.951057 0.309017i 0 2.00000 + 1.00000i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
11.c even 5 1 inner
55.j even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 990.2.ba.c 8
3.b odd 2 1 990.2.ba.e yes 8
5.b even 2 1 inner 990.2.ba.c 8
11.c even 5 1 inner 990.2.ba.c 8
15.d odd 2 1 990.2.ba.e yes 8
33.h odd 10 1 990.2.ba.e yes 8
55.j even 10 1 inner 990.2.ba.c 8
165.o odd 10 1 990.2.ba.e yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
990.2.ba.c 8 1.a even 1 1 trivial
990.2.ba.c 8 5.b even 2 1 inner
990.2.ba.c 8 11.c even 5 1 inner
990.2.ba.c 8 55.j even 10 1 inner
990.2.ba.e yes 8 3.b odd 2 1
990.2.ba.e yes 8 15.d odd 2 1
990.2.ba.e yes 8 33.h odd 10 1
990.2.ba.e yes 8 165.o odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(990, [\chi])\):

\( T_{7}^{8} + 4T_{7}^{6} + 96T_{7}^{4} - 256T_{7}^{2} + 256 \) Copy content Toggle raw display
\( T_{13}^{8} - 4T_{13}^{6} + 6T_{13}^{4} + T_{13}^{2} + 1 \) Copy content Toggle raw display
\( T_{29}^{4} - 11T_{29}^{3} + 96T_{29}^{2} - 406T_{29} + 841 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 2 T^{7} + \cdots + 625 \) Copy content Toggle raw display
$7$ \( T^{8} + 4 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$11$ \( (T^{4} + 9 T^{3} + \cdots + 121)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} - 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{8} + T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( (T^{4} + 12 T^{3} + \cdots + 256)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 3 T^{2} + 1)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 11 T^{3} + \cdots + 841)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 4 T^{3} + 46 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} - 20 T^{6} + \cdots + 9150625 \) Copy content Toggle raw display
$41$ \( (T^{4} + 18 T^{3} + \cdots + 5776)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 147 T^{2} + 5041)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} - 11 T^{6} + \cdots + 12117361 \) Copy content Toggle raw display
$53$ \( T^{8} - 176 T^{6} + \cdots + 33362176 \) Copy content Toggle raw display
$59$ \( (T^{4} + 18 T^{3} + \cdots + 9801)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 40 T^{2} + \cdots + 400)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 15 T^{2} + 25)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 10 T^{3} + \cdots + 400)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + 16 T^{6} + \cdots + 181063936 \) Copy content Toggle raw display
$79$ \( (T^{4} + 11 T^{3} + \cdots + 5041)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} - 80 T^{6} + \cdots + 160000 \) Copy content Toggle raw display
$89$ \( (T^{2} - 8 T - 4)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} + 4 T^{6} + \cdots + 256 \) Copy content Toggle raw display
show more
show less