Properties

Label 990.2.ba.c.289.1
Level $990$
Weight $2$
Character 990.289
Analytic conductor $7.905$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(289,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.ba (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,2,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 289.1
Root \(0.587785 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 990.289
Dual form 990.2.ba.c.829.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.587785 - 0.809017i) q^{2} +(-0.309017 + 0.951057i) q^{4} +(-1.98459 + 1.03025i) q^{5} +(1.17557 + 0.381966i) q^{7} +(0.951057 - 0.309017i) q^{8} +(2.00000 + 1.00000i) q^{10} +(-2.80902 - 1.76336i) q^{11} +(0.363271 + 0.500000i) q^{13} +(-0.381966 - 1.17557i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(-0.951057 + 1.30902i) q^{17} +(-0.763932 - 2.35114i) q^{19} +(-0.366554 - 2.20582i) q^{20} +(0.224514 + 3.30902i) q^{22} +1.61803i q^{23} +(2.87718 - 4.08924i) q^{25} +(0.190983 - 0.587785i) q^{26} +(-0.726543 + 1.00000i) q^{28} +(2.19098 - 6.74315i) q^{29} +(-0.118034 + 0.0857567i) q^{31} +1.00000i q^{32} +1.61803 q^{34} +(-2.72654 + 0.453085i) q^{35} +(6.06961 + 1.97214i) q^{37} +(-1.45309 + 2.00000i) q^{38} +(-1.56909 + 1.59310i) q^{40} +(-3.38197 - 10.4086i) q^{41} -9.61803i q^{43} +(2.54508 - 2.12663i) q^{44} +(1.30902 - 0.951057i) q^{46} +(-6.01661 + 1.95492i) q^{47} +(-4.42705 - 3.21644i) q^{49} +(-4.99942 + 0.0759100i) q^{50} +(-0.587785 + 0.190983i) q^{52} +(-3.97574 - 5.47214i) q^{53} +(7.39144 + 0.605548i) q^{55} +1.23607 q^{56} +(-6.74315 + 2.19098i) q^{58} +(2.20820 - 6.79615i) q^{59} +(-2.23607 - 1.62460i) q^{61} +(0.138757 + 0.0450850i) q^{62} +(0.809017 - 0.587785i) q^{64} +(-1.23607 - 0.618034i) q^{65} -1.38197i q^{67} +(-0.951057 - 1.30902i) q^{68} +(1.96917 + 1.93950i) q^{70} +(1.38197 + 1.00406i) q^{71} +(-7.77997 - 2.52786i) q^{73} +(-1.97214 - 6.06961i) q^{74} +2.47214 q^{76} +(-2.62866 - 3.14590i) q^{77} +(-7.78115 + 5.65334i) q^{79} +(2.21113 + 0.333023i) q^{80} +(-6.43288 + 8.85410i) q^{82} +(-1.62460 + 2.23607i) q^{83} +(0.538842 - 3.57768i) q^{85} +(-7.78115 + 5.65334i) q^{86} +(-3.21644 - 0.809017i) q^{88} +8.47214 q^{89} +(0.236068 + 0.726543i) q^{91} +(-1.53884 - 0.500000i) q^{92} +(5.11803 + 3.71847i) q^{94} +(3.93835 + 3.87901i) q^{95} +(1.90211 + 2.61803i) q^{97} +5.47214i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} - 2 q^{5} + 16 q^{10} - 18 q^{11} - 12 q^{14} - 2 q^{16} - 24 q^{19} + 2 q^{20} + 6 q^{25} + 6 q^{26} + 22 q^{29} + 8 q^{31} + 4 q^{34} - 16 q^{35} + 4 q^{40} - 36 q^{41} - 2 q^{44} + 6 q^{46}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.587785 0.809017i −0.415627 0.572061i
\(3\) 0 0
\(4\) −0.309017 + 0.951057i −0.154508 + 0.475528i
\(5\) −1.98459 + 1.03025i −0.887535 + 0.460741i
\(6\) 0 0
\(7\) 1.17557 + 0.381966i 0.444324 + 0.144370i 0.522630 0.852560i \(-0.324951\pi\)
−0.0783058 + 0.996929i \(0.524951\pi\)
\(8\) 0.951057 0.309017i 0.336249 0.109254i
\(9\) 0 0
\(10\) 2.00000 + 1.00000i 0.632456 + 0.316228i
\(11\) −2.80902 1.76336i −0.846950 0.531672i
\(12\) 0 0
\(13\) 0.363271 + 0.500000i 0.100753 + 0.138675i 0.856417 0.516285i \(-0.172685\pi\)
−0.755664 + 0.654960i \(0.772685\pi\)
\(14\) −0.381966 1.17557i −0.102085 0.314184i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) −0.951057 + 1.30902i −0.230665 + 0.317483i −0.908623 0.417618i \(-0.862865\pi\)
0.677958 + 0.735101i \(0.262865\pi\)
\(18\) 0 0
\(19\) −0.763932 2.35114i −0.175258 0.539389i 0.824387 0.566026i \(-0.191520\pi\)
−0.999645 + 0.0266376i \(0.991520\pi\)
\(20\) −0.366554 2.20582i −0.0819639 0.493236i
\(21\) 0 0
\(22\) 0.224514 + 3.30902i 0.0478665 + 0.705485i
\(23\) 1.61803i 0.337383i 0.985669 + 0.168692i \(0.0539542\pi\)
−0.985669 + 0.168692i \(0.946046\pi\)
\(24\) 0 0
\(25\) 2.87718 4.08924i 0.575435 0.817848i
\(26\) 0.190983 0.587785i 0.0374548 0.115274i
\(27\) 0 0
\(28\) −0.726543 + 1.00000i −0.137304 + 0.188982i
\(29\) 2.19098 6.74315i 0.406855 1.25217i −0.512481 0.858699i \(-0.671273\pi\)
0.919336 0.393473i \(-0.128727\pi\)
\(30\) 0 0
\(31\) −0.118034 + 0.0857567i −0.0211995 + 0.0154024i −0.598335 0.801246i \(-0.704171\pi\)
0.577135 + 0.816649i \(0.304171\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 1.61803 0.277491
\(35\) −2.72654 + 0.453085i −0.460870 + 0.0765854i
\(36\) 0 0
\(37\) 6.06961 + 1.97214i 0.997838 + 0.324217i 0.762001 0.647576i \(-0.224217\pi\)
0.235837 + 0.971793i \(0.424217\pi\)
\(38\) −1.45309 + 2.00000i −0.235722 + 0.324443i
\(39\) 0 0
\(40\) −1.56909 + 1.59310i −0.248095 + 0.251891i
\(41\) −3.38197 10.4086i −0.528174 1.62555i −0.757952 0.652310i \(-0.773800\pi\)
0.229778 0.973243i \(-0.426200\pi\)
\(42\) 0 0
\(43\) 9.61803i 1.46674i −0.679832 0.733368i \(-0.737947\pi\)
0.679832 0.733368i \(-0.262053\pi\)
\(44\) 2.54508 2.12663i 0.383686 0.320601i
\(45\) 0 0
\(46\) 1.30902 0.951057i 0.193004 0.140226i
\(47\) −6.01661 + 1.95492i −0.877613 + 0.285154i −0.712966 0.701199i \(-0.752648\pi\)
−0.164647 + 0.986353i \(0.552648\pi\)
\(48\) 0 0
\(49\) −4.42705 3.21644i −0.632436 0.459492i
\(50\) −4.99942 + 0.0759100i −0.707025 + 0.0107353i
\(51\) 0 0
\(52\) −0.587785 + 0.190983i −0.0815111 + 0.0264846i
\(53\) −3.97574 5.47214i −0.546110 0.751656i 0.443368 0.896340i \(-0.353783\pi\)
−0.989478 + 0.144684i \(0.953783\pi\)
\(54\) 0 0
\(55\) 7.39144 + 0.605548i 0.996661 + 0.0816520i
\(56\) 1.23607 0.165177
\(57\) 0 0
\(58\) −6.74315 + 2.19098i −0.885419 + 0.287690i
\(59\) 2.20820 6.79615i 0.287484 0.884784i −0.698160 0.715942i \(-0.745997\pi\)
0.985643 0.168842i \(-0.0540026\pi\)
\(60\) 0 0
\(61\) −2.23607 1.62460i −0.286299 0.208009i 0.435361 0.900256i \(-0.356621\pi\)
−0.721660 + 0.692247i \(0.756621\pi\)
\(62\) 0.138757 + 0.0450850i 0.0176222 + 0.00572580i
\(63\) 0 0
\(64\) 0.809017 0.587785i 0.101127 0.0734732i
\(65\) −1.23607 0.618034i −0.153315 0.0766577i
\(66\) 0 0
\(67\) 1.38197i 0.168834i −0.996431 0.0844170i \(-0.973097\pi\)
0.996431 0.0844170i \(-0.0269028\pi\)
\(68\) −0.951057 1.30902i −0.115333 0.158742i
\(69\) 0 0
\(70\) 1.96917 + 1.93950i 0.235361 + 0.231815i
\(71\) 1.38197 + 1.00406i 0.164009 + 0.119160i 0.666762 0.745270i \(-0.267680\pi\)
−0.502753 + 0.864430i \(0.667680\pi\)
\(72\) 0 0
\(73\) −7.77997 2.52786i −0.910576 0.295864i −0.183981 0.982930i \(-0.558898\pi\)
−0.726595 + 0.687066i \(0.758898\pi\)
\(74\) −1.97214 6.06961i −0.229256 0.705578i
\(75\) 0 0
\(76\) 2.47214 0.283573
\(77\) −2.62866 3.14590i −0.299563 0.358508i
\(78\) 0 0
\(79\) −7.78115 + 5.65334i −0.875448 + 0.636050i −0.932043 0.362347i \(-0.881976\pi\)
0.0565952 + 0.998397i \(0.481976\pi\)
\(80\) 2.21113 + 0.333023i 0.247212 + 0.0372331i
\(81\) 0 0
\(82\) −6.43288 + 8.85410i −0.710393 + 0.977772i
\(83\) −1.62460 + 2.23607i −0.178323 + 0.245440i −0.888817 0.458263i \(-0.848472\pi\)
0.710494 + 0.703704i \(0.248472\pi\)
\(84\) 0 0
\(85\) 0.538842 3.57768i 0.0584456 0.388054i
\(86\) −7.78115 + 5.65334i −0.839063 + 0.609615i
\(87\) 0 0
\(88\) −3.21644 0.809017i −0.342874 0.0862415i
\(89\) 8.47214 0.898045 0.449022 0.893521i \(-0.351772\pi\)
0.449022 + 0.893521i \(0.351772\pi\)
\(90\) 0 0
\(91\) 0.236068 + 0.726543i 0.0247466 + 0.0761624i
\(92\) −1.53884 0.500000i −0.160435 0.0521286i
\(93\) 0 0
\(94\) 5.11803 + 3.71847i 0.527885 + 0.383531i
\(95\) 3.93835 + 3.87901i 0.404066 + 0.397978i
\(96\) 0 0
\(97\) 1.90211 + 2.61803i 0.193130 + 0.265821i 0.894590 0.446888i \(-0.147468\pi\)
−0.701459 + 0.712709i \(0.747468\pi\)
\(98\) 5.47214i 0.552769i
\(99\) 0 0
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) −0.690983 + 0.502029i −0.0687554 + 0.0499537i −0.621632 0.783309i \(-0.713530\pi\)
0.552877 + 0.833263i \(0.313530\pi\)
\(102\) 0 0
\(103\) −16.5640 5.38197i −1.63210 0.530301i −0.657346 0.753589i \(-0.728321\pi\)
−0.974752 + 0.223288i \(0.928321\pi\)
\(104\) 0.500000 + 0.363271i 0.0490290 + 0.0356217i
\(105\) 0 0
\(106\) −2.09017 + 6.43288i −0.203015 + 0.624817i
\(107\) 16.8415 5.47214i 1.62813 0.529011i 0.654289 0.756244i \(-0.272968\pi\)
0.973840 + 0.227233i \(0.0729679\pi\)
\(108\) 0 0
\(109\) 12.9443 1.23984 0.619918 0.784666i \(-0.287166\pi\)
0.619918 + 0.784666i \(0.287166\pi\)
\(110\) −3.85468 6.33573i −0.367529 0.604088i
\(111\) 0 0
\(112\) −0.726543 1.00000i −0.0686518 0.0944911i
\(113\) −9.37181 + 3.04508i −0.881626 + 0.286457i −0.714632 0.699501i \(-0.753406\pi\)
−0.166993 + 0.985958i \(0.553406\pi\)
\(114\) 0 0
\(115\) −1.66698 3.21113i −0.155446 0.299439i
\(116\) 5.73607 + 4.16750i 0.532581 + 0.386942i
\(117\) 0 0
\(118\) −6.79615 + 2.20820i −0.625637 + 0.203282i
\(119\) −1.61803 + 1.17557i −0.148325 + 0.107764i
\(120\) 0 0
\(121\) 4.78115 + 9.90659i 0.434650 + 0.900599i
\(122\) 2.76393i 0.250235i
\(123\) 0 0
\(124\) −0.0450850 0.138757i −0.00404875 0.0124608i
\(125\) −1.49707 + 11.0797i −0.133902 + 0.990995i
\(126\) 0 0
\(127\) 4.70228 6.47214i 0.417260 0.574309i −0.547710 0.836668i \(-0.684500\pi\)
0.964970 + 0.262359i \(0.0845004\pi\)
\(128\) −0.951057 0.309017i −0.0840623 0.0273135i
\(129\) 0 0
\(130\) 0.226543 + 1.36327i 0.0198691 + 0.119567i
\(131\) −3.85410 −0.336734 −0.168367 0.985724i \(-0.553849\pi\)
−0.168367 + 0.985724i \(0.553849\pi\)
\(132\) 0 0
\(133\) 3.05573i 0.264965i
\(134\) −1.11803 + 0.812299i −0.0965834 + 0.0701720i
\(135\) 0 0
\(136\) −0.500000 + 1.53884i −0.0428746 + 0.131955i
\(137\) −5.62058 + 7.73607i −0.480199 + 0.660937i −0.978543 0.206042i \(-0.933942\pi\)
0.498344 + 0.866979i \(0.333942\pi\)
\(138\) 0 0
\(139\) −2.09017 + 6.43288i −0.177286 + 0.545630i −0.999730 0.0232153i \(-0.992610\pi\)
0.822445 + 0.568845i \(0.192610\pi\)
\(140\) 0.411638 2.73311i 0.0347898 0.230990i
\(141\) 0 0
\(142\) 1.70820i 0.143349i
\(143\) −0.138757 2.04508i −0.0116035 0.171019i
\(144\) 0 0
\(145\) 2.59893 + 15.6396i 0.215829 + 1.29880i
\(146\) 2.52786 + 7.77997i 0.209208 + 0.643875i
\(147\) 0 0
\(148\) −3.75123 + 5.16312i −0.308349 + 0.424406i
\(149\) 5.78115 + 4.20025i 0.473611 + 0.344098i 0.798847 0.601535i \(-0.205444\pi\)
−0.325236 + 0.945633i \(0.605444\pi\)
\(150\) 0 0
\(151\) −4.76393 14.6619i −0.387683 1.19317i −0.934515 0.355924i \(-0.884166\pi\)
0.546832 0.837243i \(-0.315834\pi\)
\(152\) −1.45309 2.00000i −0.117861 0.162221i
\(153\) 0 0
\(154\) −1.00000 + 3.97574i −0.0805823 + 0.320374i
\(155\) 0.145898 0.291796i 0.0117188 0.0234376i
\(156\) 0 0
\(157\) 5.84510 1.89919i 0.466489 0.151572i −0.0663350 0.997797i \(-0.521131\pi\)
0.532824 + 0.846226i \(0.321131\pi\)
\(158\) 9.14729 + 2.97214i 0.727720 + 0.236450i
\(159\) 0 0
\(160\) −1.03025 1.98459i −0.0814483 0.156895i
\(161\) −0.618034 + 1.90211i −0.0487079 + 0.149908i
\(162\) 0 0
\(163\) −11.9147 16.3992i −0.933232 1.28448i −0.958586 0.284805i \(-0.908071\pi\)
0.0253536 0.999679i \(-0.491929\pi\)
\(164\) 10.9443 0.854604
\(165\) 0 0
\(166\) 2.76393 0.214523
\(167\) 5.34307 + 7.35410i 0.413459 + 0.569077i 0.964058 0.265692i \(-0.0856006\pi\)
−0.550599 + 0.834770i \(0.685601\pi\)
\(168\) 0 0
\(169\) 3.89919 12.0005i 0.299937 0.923113i
\(170\) −3.21113 + 1.66698i −0.246282 + 0.127851i
\(171\) 0 0
\(172\) 9.14729 + 2.97214i 0.697475 + 0.226623i
\(173\) 18.4661 6.00000i 1.40395 0.456172i 0.493485 0.869754i \(-0.335723\pi\)
0.910467 + 0.413583i \(0.135723\pi\)
\(174\) 0 0
\(175\) 4.94427 3.70820i 0.373752 0.280314i
\(176\) 1.23607 + 3.07768i 0.0931721 + 0.231989i
\(177\) 0 0
\(178\) −4.97980 6.85410i −0.373252 0.513737i
\(179\) 4.71885 + 14.5231i 0.352703 + 1.08551i 0.957329 + 0.288999i \(0.0933225\pi\)
−0.604626 + 0.796509i \(0.706677\pi\)
\(180\) 0 0
\(181\) −16.0902 11.6902i −1.19597 0.868925i −0.202090 0.979367i \(-0.564773\pi\)
−0.993883 + 0.110442i \(0.964773\pi\)
\(182\) 0.449028 0.618034i 0.0332842 0.0458117i
\(183\) 0 0
\(184\) 0.500000 + 1.53884i 0.0368605 + 0.113445i
\(185\) −14.0775 + 2.33933i −1.03500 + 0.171991i
\(186\) 0 0
\(187\) 4.97980 2.00000i 0.364159 0.146254i
\(188\) 6.32624i 0.461388i
\(189\) 0 0
\(190\) 0.823277 5.46621i 0.0597268 0.396561i
\(191\) −1.38197 + 4.25325i −0.0999956 + 0.307755i −0.988523 0.151068i \(-0.951729\pi\)
0.888528 + 0.458823i \(0.151729\pi\)
\(192\) 0 0
\(193\) −4.14725 + 5.70820i −0.298526 + 0.410886i −0.931760 0.363075i \(-0.881727\pi\)
0.633234 + 0.773960i \(0.281727\pi\)
\(194\) 1.00000 3.07768i 0.0717958 0.220965i
\(195\) 0 0
\(196\) 4.42705 3.21644i 0.316218 0.229746i
\(197\) 10.7639i 0.766898i −0.923562 0.383449i \(-0.874736\pi\)
0.923562 0.383449i \(-0.125264\pi\)
\(198\) 0 0
\(199\) −9.03444 −0.640435 −0.320217 0.947344i \(-0.603756\pi\)
−0.320217 + 0.947344i \(0.603756\pi\)
\(200\) 1.47271 4.77819i 0.104136 0.337869i
\(201\) 0 0
\(202\) 0.812299 + 0.263932i 0.0571532 + 0.0185702i
\(203\) 5.15131 7.09017i 0.361551 0.497632i
\(204\) 0 0
\(205\) 17.4353 + 17.1726i 1.21773 + 1.19938i
\(206\) 5.38197 + 16.5640i 0.374979 + 1.15407i
\(207\) 0 0
\(208\) 0.618034i 0.0428529i
\(209\) −2.00000 + 7.95148i −0.138343 + 0.550015i
\(210\) 0 0
\(211\) −9.85410 + 7.15942i −0.678384 + 0.492875i −0.872821 0.488040i \(-0.837712\pi\)
0.194437 + 0.980915i \(0.437712\pi\)
\(212\) 6.43288 2.09017i 0.441812 0.143553i
\(213\) 0 0
\(214\) −14.3262 10.4086i −0.979321 0.711519i
\(215\) 9.90897 + 19.0878i 0.675786 + 1.30178i
\(216\) 0 0
\(217\) −0.171513 + 0.0557281i −0.0116431 + 0.00378307i
\(218\) −7.60845 10.4721i −0.515309 0.709263i
\(219\) 0 0
\(220\) −2.85999 + 6.84255i −0.192820 + 0.461324i
\(221\) −1.00000 −0.0672673
\(222\) 0 0
\(223\) −3.63271 + 1.18034i −0.243264 + 0.0790414i −0.428112 0.903726i \(-0.640821\pi\)
0.184847 + 0.982767i \(0.440821\pi\)
\(224\) −0.381966 + 1.17557i −0.0255212 + 0.0785461i
\(225\) 0 0
\(226\) 7.97214 + 5.79210i 0.530299 + 0.385284i
\(227\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(228\) 0 0
\(229\) 15.8541 11.5187i 1.04767 0.761176i 0.0759008 0.997115i \(-0.475817\pi\)
0.971768 + 0.235940i \(0.0758168\pi\)
\(230\) −1.61803 + 3.23607i −0.106690 + 0.213380i
\(231\) 0 0
\(232\) 7.09017i 0.465492i
\(233\) 12.8455 + 17.6803i 0.841538 + 1.15828i 0.985664 + 0.168718i \(0.0539628\pi\)
−0.144126 + 0.989559i \(0.546037\pi\)
\(234\) 0 0
\(235\) 9.92644 10.0783i 0.647530 0.657436i
\(236\) 5.78115 + 4.20025i 0.376321 + 0.273413i
\(237\) 0 0
\(238\) 1.90211 + 0.618034i 0.123296 + 0.0400612i
\(239\) −1.79837 5.53483i −0.116327 0.358018i 0.875894 0.482503i \(-0.160272\pi\)
−0.992222 + 0.124485i \(0.960272\pi\)
\(240\) 0 0
\(241\) 14.9443 0.962645 0.481323 0.876544i \(-0.340157\pi\)
0.481323 + 0.876544i \(0.340157\pi\)
\(242\) 5.20431 9.69098i 0.334546 0.622960i
\(243\) 0 0
\(244\) 2.23607 1.62460i 0.143150 0.104004i
\(245\) 12.0996 + 1.82234i 0.773015 + 0.116425i
\(246\) 0 0
\(247\) 0.898056 1.23607i 0.0571419 0.0786491i
\(248\) −0.0857567 + 0.118034i −0.00544556 + 0.00749517i
\(249\) 0 0
\(250\) 9.84359 5.30130i 0.622563 0.335284i
\(251\) 5.92705 4.30625i 0.374112 0.271808i −0.384802 0.922999i \(-0.625730\pi\)
0.758914 + 0.651191i \(0.225730\pi\)
\(252\) 0 0
\(253\) 2.85317 4.54508i 0.179377 0.285747i
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −7.15942 2.32624i −0.446593 0.145107i 0.0770826 0.997025i \(-0.475439\pi\)
−0.523675 + 0.851918i \(0.675439\pi\)
\(258\) 0 0
\(259\) 6.38197 + 4.63677i 0.396556 + 0.288115i
\(260\) 0.969751 0.984587i 0.0601414 0.0610615i
\(261\) 0 0
\(262\) 2.26538 + 3.11803i 0.139956 + 0.192633i
\(263\) 6.56231i 0.404649i 0.979319 + 0.202325i \(0.0648496\pi\)
−0.979319 + 0.202325i \(0.935150\pi\)
\(264\) 0 0
\(265\) 13.5279 + 6.76393i 0.831010 + 0.415505i
\(266\) −2.47214 + 1.79611i −0.151576 + 0.110127i
\(267\) 0 0
\(268\) 1.31433 + 0.427051i 0.0802853 + 0.0260863i
\(269\) 21.4443 + 15.5802i 1.30748 + 0.949940i 0.999999 0.00161395i \(-0.000513736\pi\)
0.307482 + 0.951554i \(0.400514\pi\)
\(270\) 0 0
\(271\) −5.20820 + 16.0292i −0.316376 + 0.973705i 0.658809 + 0.752311i \(0.271061\pi\)
−0.975184 + 0.221394i \(0.928939\pi\)
\(272\) 1.53884 0.500000i 0.0933060 0.0303170i
\(273\) 0 0
\(274\) 9.56231 0.577680
\(275\) −15.2928 + 6.41325i −0.922191 + 0.386734i
\(276\) 0 0
\(277\) 17.5150 + 24.1074i 1.05238 + 1.44847i 0.886730 + 0.462288i \(0.152971\pi\)
0.165647 + 0.986185i \(0.447029\pi\)
\(278\) 6.43288 2.09017i 0.385819 0.125360i
\(279\) 0 0
\(280\) −2.45309 + 1.27346i −0.146600 + 0.0761036i
\(281\) −4.23607 3.07768i −0.252703 0.183599i 0.454221 0.890889i \(-0.349918\pi\)
−0.706924 + 0.707290i \(0.749918\pi\)
\(282\) 0 0
\(283\) −27.1114 + 8.80902i −1.61160 + 0.523642i −0.969940 0.243345i \(-0.921755\pi\)
−0.641664 + 0.766986i \(0.721755\pi\)
\(284\) −1.38197 + 1.00406i −0.0820046 + 0.0595798i
\(285\) 0 0
\(286\) −1.57295 + 1.31433i −0.0930104 + 0.0777178i
\(287\) 13.5279i 0.798525i
\(288\) 0 0
\(289\) 4.44427 + 13.6781i 0.261428 + 0.804592i
\(290\) 11.1251 11.2953i 0.653289 0.663284i
\(291\) 0 0
\(292\) 4.80828 6.61803i 0.281383 0.387291i
\(293\) −2.45714 0.798374i −0.143548 0.0466415i 0.236362 0.971665i \(-0.424045\pi\)
−0.379910 + 0.925024i \(0.624045\pi\)
\(294\) 0 0
\(295\) 2.61935 + 15.7626i 0.152505 + 0.917732i
\(296\) 6.38197 0.370944
\(297\) 0 0
\(298\) 7.14590i 0.413951i
\(299\) −0.809017 + 0.587785i −0.0467867 + 0.0339925i
\(300\) 0 0
\(301\) 3.67376 11.3067i 0.211752 0.651706i
\(302\) −9.06154 + 12.4721i −0.521433 + 0.717691i
\(303\) 0 0
\(304\) −0.763932 + 2.35114i −0.0438145 + 0.134847i
\(305\) 6.11141 + 0.920452i 0.349938 + 0.0527049i
\(306\) 0 0
\(307\) 9.74265i 0.556042i −0.960575 0.278021i \(-0.910321\pi\)
0.960575 0.278021i \(-0.0896785\pi\)
\(308\) 3.80423 1.52786i 0.216766 0.0870581i
\(309\) 0 0
\(310\) −0.321825 + 0.0534794i −0.0182784 + 0.00303743i
\(311\) −6.14590 18.9151i −0.348502 1.07258i −0.959682 0.281087i \(-0.909305\pi\)
0.611180 0.791491i \(-0.290695\pi\)
\(312\) 0 0
\(313\) −15.2169 + 20.9443i −0.860110 + 1.18384i 0.121433 + 0.992600i \(0.461251\pi\)
−0.981543 + 0.191241i \(0.938749\pi\)
\(314\) −4.97214 3.61247i −0.280594 0.203863i
\(315\) 0 0
\(316\) −2.97214 9.14729i −0.167196 0.514575i
\(317\) 12.8658 + 17.7082i 0.722613 + 0.994592i 0.999433 + 0.0336700i \(0.0107195\pi\)
−0.276820 + 0.960922i \(0.589280\pi\)
\(318\) 0 0
\(319\) −18.0451 + 15.0781i −1.01033 + 0.844214i
\(320\) −1.00000 + 2.00000i −0.0559017 + 0.111803i
\(321\) 0 0
\(322\) 1.90211 0.618034i 0.106001 0.0344417i
\(323\) 3.80423 + 1.23607i 0.211673 + 0.0687767i
\(324\) 0 0
\(325\) 3.08981 0.0469149i 0.171392 0.00260237i
\(326\) −6.26393 + 19.2784i −0.346927 + 1.06773i
\(327\) 0 0
\(328\) −6.43288 8.85410i −0.355196 0.488886i
\(329\) −7.81966 −0.431112
\(330\) 0 0
\(331\) 26.4721 1.45504 0.727520 0.686086i \(-0.240673\pi\)
0.727520 + 0.686086i \(0.240673\pi\)
\(332\) −1.62460 2.23607i −0.0891614 0.122720i
\(333\) 0 0
\(334\) 2.80902 8.64527i 0.153703 0.473048i
\(335\) 1.42377 + 2.74263i 0.0777888 + 0.149846i
\(336\) 0 0
\(337\) 12.3107 + 4.00000i 0.670608 + 0.217894i 0.624479 0.781042i \(-0.285311\pi\)
0.0461294 + 0.998935i \(0.485311\pi\)
\(338\) −12.0005 + 3.89919i −0.652739 + 0.212088i
\(339\) 0 0
\(340\) 3.23607 + 1.61803i 0.175500 + 0.0877502i
\(341\) 0.482779 0.0327561i 0.0261440 0.00177384i
\(342\) 0 0
\(343\) −9.06154 12.4721i −0.489277 0.673432i
\(344\) −2.97214 9.14729i −0.160247 0.493189i
\(345\) 0 0
\(346\) −15.7082 11.4127i −0.844478 0.613549i
\(347\) −4.25325 + 5.85410i −0.228327 + 0.314265i −0.907774 0.419460i \(-0.862220\pi\)
0.679447 + 0.733724i \(0.262220\pi\)
\(348\) 0 0
\(349\) −0.0557281 0.171513i −0.00298306 0.00918090i 0.949554 0.313604i \(-0.101536\pi\)
−0.952537 + 0.304423i \(0.901536\pi\)
\(350\) −5.90617 1.82037i −0.315698 0.0973030i
\(351\) 0 0
\(352\) 1.76336 2.80902i 0.0939872 0.149721i
\(353\) 10.5623i 0.562175i −0.959682 0.281087i \(-0.909305\pi\)
0.959682 0.281087i \(-0.0906951\pi\)
\(354\) 0 0
\(355\) −3.77706 0.568870i −0.200466 0.0301925i
\(356\) −2.61803 + 8.05748i −0.138756 + 0.427046i
\(357\) 0 0
\(358\) 8.97578 12.3541i 0.474385 0.652935i
\(359\) −5.27051 + 16.2210i −0.278167 + 0.856110i 0.710197 + 0.704003i \(0.248606\pi\)
−0.988364 + 0.152107i \(0.951394\pi\)
\(360\) 0 0
\(361\) 10.4271 7.57570i 0.548792 0.398721i
\(362\) 19.8885i 1.04532i
\(363\) 0 0
\(364\) −0.763932 −0.0400409
\(365\) 18.0444 2.99853i 0.944485 0.156950i
\(366\) 0 0
\(367\) −27.0786 8.79837i −1.41349 0.459271i −0.499964 0.866046i \(-0.666653\pi\)
−0.913528 + 0.406775i \(0.866653\pi\)
\(368\) 0.951057 1.30902i 0.0495772 0.0682372i
\(369\) 0 0
\(370\) 10.1671 + 10.0139i 0.528562 + 0.520597i
\(371\) −2.58359 7.95148i −0.134133 0.412820i
\(372\) 0 0
\(373\) 9.41641i 0.487563i 0.969830 + 0.243782i \(0.0783880\pi\)
−0.969830 + 0.243782i \(0.921612\pi\)
\(374\) −4.54508 2.85317i −0.235021 0.147534i
\(375\) 0 0
\(376\) −5.11803 + 3.71847i −0.263942 + 0.191765i
\(377\) 4.16750 1.35410i 0.214637 0.0697398i
\(378\) 0 0
\(379\) −26.4164 19.1926i −1.35692 0.985860i −0.998634 0.0522478i \(-0.983361\pi\)
−0.358286 0.933612i \(-0.616639\pi\)
\(380\) −4.90617 + 2.54691i −0.251681 + 0.130654i
\(381\) 0 0
\(382\) 4.25325 1.38197i 0.217615 0.0707075i
\(383\) −10.6004 14.5902i −0.541654 0.745523i 0.447196 0.894436i \(-0.352423\pi\)
−0.988850 + 0.148913i \(0.952423\pi\)
\(384\) 0 0
\(385\) 8.45785 + 3.53514i 0.431052 + 0.180167i
\(386\) 7.05573 0.359127
\(387\) 0 0
\(388\) −3.07768 + 1.00000i −0.156246 + 0.0507673i
\(389\) −0.972136 + 2.99193i −0.0492892 + 0.151697i −0.972672 0.232184i \(-0.925413\pi\)
0.923383 + 0.383881i \(0.125413\pi\)
\(390\) 0 0
\(391\) −2.11803 1.53884i −0.107114 0.0778226i
\(392\) −5.20431 1.69098i −0.262857 0.0854075i
\(393\) 0 0
\(394\) −8.70820 + 6.32688i −0.438713 + 0.318744i
\(395\) 9.61803 19.2361i 0.483936 0.967872i
\(396\) 0 0
\(397\) 5.61803i 0.281961i −0.990012 0.140981i \(-0.954975\pi\)
0.990012 0.140981i \(-0.0450255\pi\)
\(398\) 5.31031 + 7.30902i 0.266182 + 0.366368i
\(399\) 0 0
\(400\) −4.73128 + 1.61710i −0.236564 + 0.0808551i
\(401\) −24.5623 17.8456i −1.22658 0.891165i −0.229954 0.973202i \(-0.573857\pi\)
−0.996629 + 0.0820368i \(0.973857\pi\)
\(402\) 0 0
\(403\) −0.0857567 0.0278640i −0.00427185 0.00138801i
\(404\) −0.263932 0.812299i −0.0131311 0.0404134i
\(405\) 0 0
\(406\) −8.76393 −0.434947
\(407\) −13.5721 16.2426i −0.672742 0.805118i
\(408\) 0 0
\(409\) −17.6803 + 12.8455i −0.874237 + 0.635170i −0.931720 0.363176i \(-0.881692\pi\)
0.0574839 + 0.998346i \(0.481692\pi\)
\(410\) 3.64469 24.1992i 0.179998 1.19511i
\(411\) 0 0
\(412\) 10.2371 14.0902i 0.504346 0.694173i
\(413\) 5.19180 7.14590i 0.255472 0.351627i
\(414\) 0 0
\(415\) 0.920452 6.11141i 0.0451832 0.299997i
\(416\) −0.500000 + 0.363271i −0.0245145 + 0.0178108i
\(417\) 0 0
\(418\) 7.60845 3.05573i 0.372142 0.149461i
\(419\) −34.5623 −1.68848 −0.844240 0.535966i \(-0.819948\pi\)
−0.844240 + 0.535966i \(0.819948\pi\)
\(420\) 0 0
\(421\) 2.03444 + 6.26137i 0.0991526 + 0.305160i 0.988314 0.152434i \(-0.0487112\pi\)
−0.889161 + 0.457594i \(0.848711\pi\)
\(422\) 11.5842 + 3.76393i 0.563910 + 0.183225i
\(423\) 0 0
\(424\) −5.47214 3.97574i −0.265750 0.193079i
\(425\) 2.61653 + 7.65537i 0.126920 + 0.371340i
\(426\) 0 0
\(427\) −2.00811 2.76393i −0.0971795 0.133756i
\(428\) 17.7082i 0.855958i
\(429\) 0 0
\(430\) 9.61803 19.2361i 0.463823 0.927646i
\(431\) 29.8885 21.7153i 1.43968 1.04599i 0.451571 0.892235i \(-0.350864\pi\)
0.988109 0.153754i \(-0.0491364\pi\)
\(432\) 0 0
\(433\) −24.1724 7.85410i −1.16165 0.377444i −0.336132 0.941815i \(-0.609119\pi\)
−0.825521 + 0.564371i \(0.809119\pi\)
\(434\) 0.145898 + 0.106001i 0.00700333 + 0.00508822i
\(435\) 0 0
\(436\) −4.00000 + 12.3107i −0.191565 + 0.589577i
\(437\) 3.80423 1.23607i 0.181981 0.0591292i
\(438\) 0 0
\(439\) 37.1591 1.77350 0.886752 0.462245i \(-0.152956\pi\)
0.886752 + 0.462245i \(0.152956\pi\)
\(440\) 7.21680 1.70817i 0.344047 0.0814338i
\(441\) 0 0
\(442\) 0.587785 + 0.809017i 0.0279581 + 0.0384810i
\(443\) −38.1078 + 12.3820i −1.81055 + 0.588285i −0.810558 + 0.585658i \(0.800836\pi\)
−0.999997 + 0.00262712i \(0.999164\pi\)
\(444\) 0 0
\(445\) −16.8137 + 8.72841i −0.797046 + 0.413766i
\(446\) 3.09017 + 2.24514i 0.146324 + 0.106310i
\(447\) 0 0
\(448\) 1.17557 0.381966i 0.0555405 0.0180462i
\(449\) 10.1803 7.39645i 0.480440 0.349060i −0.321056 0.947060i \(-0.604038\pi\)
0.801496 + 0.598000i \(0.204038\pi\)
\(450\) 0 0
\(451\) −8.85410 + 35.2016i −0.416923 + 1.65758i
\(452\) 9.85410i 0.463498i
\(453\) 0 0
\(454\) 0 0
\(455\) −1.21702 1.19868i −0.0570546 0.0561949i
\(456\) 0 0
\(457\) −18.0826 + 24.8885i −0.845868 + 1.16424i 0.138890 + 0.990308i \(0.455646\pi\)
−0.984758 + 0.173929i \(0.944354\pi\)
\(458\) −18.6376 6.05573i −0.870879 0.282966i
\(459\) 0 0
\(460\) 3.56909 0.593096i 0.166410 0.0276532i
\(461\) −9.43769 −0.439557 −0.219779 0.975550i \(-0.570534\pi\)
−0.219779 + 0.975550i \(0.570534\pi\)
\(462\) 0 0
\(463\) 22.9443i 1.06631i −0.846017 0.533155i \(-0.821006\pi\)
0.846017 0.533155i \(-0.178994\pi\)
\(464\) −5.73607 + 4.16750i −0.266290 + 0.193471i
\(465\) 0 0
\(466\) 6.75329 20.7845i 0.312840 0.962823i
\(467\) −5.32282 + 7.32624i −0.246311 + 0.339018i −0.914215 0.405229i \(-0.867192\pi\)
0.667904 + 0.744247i \(0.267192\pi\)
\(468\) 0 0
\(469\) 0.527864 1.62460i 0.0243745 0.0750170i
\(470\) −13.9881 2.10678i −0.645225 0.0971785i
\(471\) 0 0
\(472\) 7.14590i 0.328917i
\(473\) −16.9600 + 27.0172i −0.779822 + 1.24225i
\(474\) 0 0
\(475\) −11.8123 3.64074i −0.541987 0.167049i
\(476\) −0.618034 1.90211i −0.0283275 0.0871832i
\(477\) 0 0
\(478\) −3.42071 + 4.70820i −0.156460 + 0.215348i
\(479\) −25.0344 18.1886i −1.14385 0.831058i −0.156201 0.987725i \(-0.549925\pi\)
−0.987651 + 0.156667i \(0.949925\pi\)
\(480\) 0 0
\(481\) 1.21885 + 3.75123i 0.0555746 + 0.171041i
\(482\) −8.78402 12.0902i −0.400101 0.550692i
\(483\) 0 0
\(484\) −10.8992 + 1.48584i −0.495418 + 0.0675382i
\(485\) −6.47214 3.23607i −0.293885 0.146942i
\(486\) 0 0
\(487\) 1.17557 0.381966i 0.0532702 0.0173085i −0.282261 0.959338i \(-0.591084\pi\)
0.335531 + 0.942029i \(0.391084\pi\)
\(488\) −2.62866 0.854102i −0.118994 0.0386634i
\(489\) 0 0
\(490\) −5.63766 10.8599i −0.254684 0.490602i
\(491\) 12.0451 37.0710i 0.543587 1.67299i −0.180739 0.983531i \(-0.557849\pi\)
0.724326 0.689458i \(-0.242151\pi\)
\(492\) 0 0
\(493\) 6.74315 + 9.28115i 0.303696 + 0.418002i
\(494\) −1.52786 −0.0687419
\(495\) 0 0
\(496\) 0.145898 0.00655102
\(497\) 1.24108 + 1.70820i 0.0556702 + 0.0766234i
\(498\) 0 0
\(499\) 5.09017 15.6659i 0.227867 0.701303i −0.770121 0.637898i \(-0.779804\pi\)
0.997988 0.0634051i \(-0.0201960\pi\)
\(500\) −10.0748 4.84760i −0.450557 0.216791i
\(501\) 0 0
\(502\) −6.96767 2.26393i −0.310982 0.101044i
\(503\) 1.65735 0.538507i 0.0738978 0.0240108i −0.271835 0.962344i \(-0.587630\pi\)
0.345733 + 0.938333i \(0.387630\pi\)
\(504\) 0 0
\(505\) 0.854102 1.70820i 0.0380070 0.0760141i
\(506\) −5.35410 + 0.363271i −0.238019 + 0.0161494i
\(507\) 0 0
\(508\) 4.70228 + 6.47214i 0.208630 + 0.287155i
\(509\) −0.392609 1.20833i −0.0174021 0.0535581i 0.941978 0.335674i \(-0.108964\pi\)
−0.959380 + 0.282115i \(0.908964\pi\)
\(510\) 0 0
\(511\) −8.18034 5.94336i −0.361877 0.262919i
\(512\) 0.587785 0.809017i 0.0259767 0.0357538i
\(513\) 0 0
\(514\) 2.32624 + 7.15942i 0.102606 + 0.315789i
\(515\) 38.4174 6.38405i 1.69288 0.281315i
\(516\) 0 0
\(517\) 20.3480 + 5.11803i 0.894903 + 0.225091i
\(518\) 7.88854i 0.346603i
\(519\) 0 0
\(520\) −1.36655 0.205819i −0.0599273 0.00902577i
\(521\) 10.8197 33.2995i 0.474018 1.45888i −0.373260 0.927727i \(-0.621760\pi\)
0.847278 0.531150i \(-0.178240\pi\)
\(522\) 0 0
\(523\) −6.71040 + 9.23607i −0.293425 + 0.403865i −0.930123 0.367248i \(-0.880300\pi\)
0.636698 + 0.771113i \(0.280300\pi\)
\(524\) 1.19098 3.66547i 0.0520283 0.160127i
\(525\) 0 0
\(526\) 5.30902 3.85723i 0.231484 0.168183i
\(527\) 0.236068i 0.0102833i
\(528\) 0 0
\(529\) 20.3820 0.886172
\(530\) −2.47934 14.9200i −0.107696 0.648084i
\(531\) 0 0
\(532\) 2.90617 + 0.944272i 0.125998 + 0.0409394i
\(533\) 3.97574 5.47214i 0.172208 0.237025i
\(534\) 0 0
\(535\) −27.7858 + 28.2109i −1.20128 + 1.21966i
\(536\) −0.427051 1.31433i −0.0184458 0.0567703i
\(537\) 0 0
\(538\) 26.5066i 1.14278i
\(539\) 6.76393 + 16.8415i 0.291343 + 0.725415i
\(540\) 0 0
\(541\) 1.76393 1.28157i 0.0758374 0.0550991i −0.549221 0.835677i \(-0.685075\pi\)
0.625058 + 0.780578i \(0.285075\pi\)
\(542\) 16.0292 5.20820i 0.688513 0.223712i
\(543\) 0 0
\(544\) −1.30902 0.951057i −0.0561236 0.0407762i
\(545\) −25.6890 + 13.3358i −1.10040 + 0.571244i
\(546\) 0 0
\(547\) −27.6664 + 8.98936i −1.18293 + 0.384357i −0.833454 0.552588i \(-0.813640\pi\)
−0.349475 + 0.936946i \(0.613640\pi\)
\(548\) −5.62058 7.73607i −0.240099 0.330468i
\(549\) 0 0
\(550\) 14.1773 + 8.60253i 0.604523 + 0.366813i
\(551\) −17.5279 −0.746712
\(552\) 0 0
\(553\) −11.3067 + 3.67376i −0.480809 + 0.156224i
\(554\) 9.20820 28.3399i 0.391219 1.20405i
\(555\) 0 0
\(556\) −5.47214 3.97574i −0.232070 0.168609i
\(557\) −26.6296 8.65248i −1.12833 0.366617i −0.315390 0.948962i \(-0.602135\pi\)
−0.812942 + 0.582345i \(0.802135\pi\)
\(558\) 0 0
\(559\) 4.80902 3.49396i 0.203400 0.147779i
\(560\) 2.47214 + 1.23607i 0.104467 + 0.0522334i
\(561\) 0 0
\(562\) 5.23607i 0.220870i
\(563\) 20.1967 + 27.7984i 0.851189 + 1.17156i 0.983599 + 0.180367i \(0.0577285\pi\)
−0.132410 + 0.991195i \(0.542272\pi\)
\(564\) 0 0
\(565\) 15.4620 15.6985i 0.650490 0.660442i
\(566\) 23.0623 + 16.7557i 0.969381 + 0.704297i
\(567\) 0 0
\(568\) 1.62460 + 0.527864i 0.0681666 + 0.0221487i
\(569\) 0.618034 + 1.90211i 0.0259093 + 0.0797407i 0.963175 0.268875i \(-0.0866518\pi\)
−0.937266 + 0.348616i \(0.886652\pi\)
\(570\) 0 0
\(571\) −0.583592 −0.0244226 −0.0122113 0.999925i \(-0.503887\pi\)
−0.0122113 + 0.999925i \(0.503887\pi\)
\(572\) 1.98787 + 0.500000i 0.0831170 + 0.0209061i
\(573\) 0 0
\(574\) −10.9443 + 7.95148i −0.456805 + 0.331888i
\(575\) 6.61653 + 4.65537i 0.275928 + 0.194142i
\(576\) 0 0
\(577\) −19.5357 + 26.8885i −0.813281 + 1.11938i 0.177528 + 0.984116i \(0.443190\pi\)
−0.990809 + 0.135269i \(0.956810\pi\)
\(578\) 8.45351 11.6353i 0.351620 0.483963i
\(579\) 0 0
\(580\) −15.6773 2.36119i −0.650964 0.0980429i
\(581\) −2.76393 + 2.00811i −0.114667 + 0.0833106i
\(582\) 0 0
\(583\) 1.51860 + 22.3820i 0.0628939 + 0.926966i
\(584\) −8.18034 −0.338505
\(585\) 0 0
\(586\) 0.798374 + 2.45714i 0.0329805 + 0.101504i
\(587\) −14.7679 4.79837i −0.609535 0.198050i −0.0120468 0.999927i \(-0.503835\pi\)
−0.597489 + 0.801877i \(0.703835\pi\)
\(588\) 0 0
\(589\) 0.291796 + 0.212002i 0.0120232 + 0.00873540i
\(590\) 11.2126 11.3841i 0.461614 0.468676i
\(591\) 0 0
\(592\) −3.75123 5.16312i −0.154174 0.212203i
\(593\) 26.5066i 1.08849i −0.838925 0.544247i \(-0.816815\pi\)
0.838925 0.544247i \(-0.183185\pi\)
\(594\) 0 0
\(595\) 2.00000 4.00000i 0.0819920 0.163984i
\(596\) −5.78115 + 4.20025i −0.236805 + 0.172049i
\(597\) 0 0
\(598\) 0.951057 + 0.309017i 0.0388916 + 0.0126366i
\(599\) −27.4164 19.9192i −1.12020 0.813876i −0.135964 0.990714i \(-0.543413\pi\)
−0.984240 + 0.176838i \(0.943413\pi\)
\(600\) 0 0
\(601\) −6.32624 + 19.4702i −0.258053 + 0.794204i 0.735160 + 0.677893i \(0.237107\pi\)
−0.993213 + 0.116311i \(0.962893\pi\)
\(602\) −11.3067 + 3.67376i −0.460826 + 0.149731i
\(603\) 0 0
\(604\) 15.4164 0.627285
\(605\) −19.6949 14.7347i −0.800710 0.599052i
\(606\) 0 0
\(607\) −0.726543 1.00000i −0.0294895 0.0405887i 0.794018 0.607895i \(-0.207986\pi\)
−0.823507 + 0.567306i \(0.807986\pi\)
\(608\) 2.35114 0.763932i 0.0953514 0.0309815i
\(609\) 0 0
\(610\) −2.84754 5.48526i −0.115293 0.222092i
\(611\) −3.16312 2.29814i −0.127966 0.0929728i
\(612\) 0 0
\(613\) 35.5851 11.5623i 1.43727 0.466997i 0.516224 0.856453i \(-0.327337\pi\)
0.921045 + 0.389456i \(0.127337\pi\)
\(614\) −7.88197 + 5.72658i −0.318090 + 0.231106i
\(615\) 0 0
\(616\) −3.47214 2.17963i −0.139896 0.0878197i
\(617\) 19.3050i 0.777188i 0.921409 + 0.388594i \(0.127039\pi\)
−0.921409 + 0.388594i \(0.872961\pi\)
\(618\) 0 0
\(619\) 11.3820 + 35.0301i 0.457480 + 1.40798i 0.868199 + 0.496216i \(0.165278\pi\)
−0.410719 + 0.911762i \(0.634722\pi\)
\(620\) 0.232430 + 0.228927i 0.00933460 + 0.00919394i
\(621\) 0 0
\(622\) −11.6902 + 16.0902i −0.468734 + 0.645157i
\(623\) 9.95959 + 3.23607i 0.399023 + 0.129650i
\(624\) 0 0
\(625\) −8.44373 23.5309i −0.337749 0.941236i
\(626\) 25.8885 1.03471
\(627\) 0 0
\(628\) 6.14590i 0.245248i
\(629\) −8.35410 + 6.06961i −0.333100 + 0.242011i
\(630\) 0 0
\(631\) 5.95492 18.3273i 0.237061 0.729600i −0.759780 0.650180i \(-0.774693\pi\)
0.996841 0.0794196i \(-0.0253067\pi\)
\(632\) −5.65334 + 7.78115i −0.224878 + 0.309518i
\(633\) 0 0
\(634\) 6.76393 20.8172i 0.268630 0.826758i
\(635\) −2.66418 + 17.6890i −0.105725 + 0.701968i
\(636\) 0 0
\(637\) 3.38197i 0.133998i
\(638\) 22.8051 + 5.73607i 0.902863 + 0.227093i
\(639\) 0 0
\(640\) 2.20582 0.366554i 0.0871927 0.0144893i
\(641\) 0.145898 + 0.449028i 0.00576263 + 0.0177355i 0.953896 0.300136i \(-0.0970320\pi\)
−0.948134 + 0.317871i \(0.897032\pi\)
\(642\) 0 0
\(643\) 9.49032 13.0623i 0.374262 0.515127i −0.579791 0.814765i \(-0.696866\pi\)
0.954053 + 0.299638i \(0.0968659\pi\)
\(644\) −1.61803 1.17557i −0.0637595 0.0463240i
\(645\) 0 0
\(646\) −1.23607 3.80423i −0.0486324 0.149675i
\(647\) 26.2336 + 36.1074i 1.03135 + 1.41953i 0.903931 + 0.427679i \(0.140669\pi\)
0.127417 + 0.991849i \(0.459331\pi\)
\(648\) 0 0
\(649\) −18.1869 + 15.1967i −0.713899 + 0.596521i
\(650\) −1.85410 2.47214i −0.0727239 0.0969651i
\(651\) 0 0
\(652\) 19.2784 6.26393i 0.755000 0.245315i
\(653\) −3.69822 1.20163i −0.144723 0.0470233i 0.235760 0.971811i \(-0.424242\pi\)
−0.380483 + 0.924788i \(0.624242\pi\)
\(654\) 0 0
\(655\) 7.64880 3.97068i 0.298863 0.155147i
\(656\) −3.38197 + 10.4086i −0.132044 + 0.406388i
\(657\) 0 0
\(658\) 4.59628 + 6.32624i 0.179182 + 0.246622i
\(659\) −9.88854 −0.385203 −0.192601 0.981277i \(-0.561692\pi\)
−0.192601 + 0.981277i \(0.561692\pi\)
\(660\) 0 0
\(661\) 40.3607 1.56985 0.784924 0.619592i \(-0.212702\pi\)
0.784924 + 0.619592i \(0.212702\pi\)
\(662\) −15.5599 21.4164i −0.604754 0.832372i
\(663\) 0 0
\(664\) −0.854102 + 2.62866i −0.0331456 + 0.102012i
\(665\) 3.14816 + 6.06436i 0.122080 + 0.235166i
\(666\) 0 0
\(667\) 10.9106 + 3.54508i 0.422462 + 0.137266i
\(668\) −8.64527 + 2.80902i −0.334495 + 0.108684i
\(669\) 0 0
\(670\) 1.38197 2.76393i 0.0533900 0.106780i
\(671\) 3.41641 + 8.50651i 0.131889 + 0.328390i
\(672\) 0 0
\(673\) 15.3229 + 21.0902i 0.590655 + 0.812966i 0.994813 0.101723i \(-0.0324355\pi\)
−0.404158 + 0.914689i \(0.632435\pi\)
\(674\) −4.00000 12.3107i −0.154074 0.474192i
\(675\) 0 0
\(676\) 10.2082 + 7.41669i 0.392623 + 0.285257i
\(677\) 13.1433 18.0902i 0.505137 0.695262i −0.477953 0.878386i \(-0.658621\pi\)
0.983090 + 0.183124i \(0.0586210\pi\)
\(678\) 0 0
\(679\) 1.23607 + 3.80423i 0.0474359 + 0.145993i
\(680\) −0.593096 3.56909i −0.0227442 0.136868i
\(681\) 0 0
\(682\) −0.310271 0.371323i −0.0118809 0.0142187i
\(683\) 20.0689i 0.767914i −0.923351 0.383957i \(-0.874561\pi\)
0.923351 0.383957i \(-0.125439\pi\)
\(684\) 0 0
\(685\) 3.18446 21.1435i 0.121672 0.807852i
\(686\) −4.76393 + 14.6619i −0.181888 + 0.559793i
\(687\) 0 0
\(688\) −5.65334 + 7.78115i −0.215532 + 0.296654i
\(689\) 1.29180 3.97574i 0.0492135 0.151464i
\(690\) 0 0
\(691\) −14.0344 + 10.1966i −0.533895 + 0.387898i −0.821813 0.569758i \(-0.807037\pi\)
0.287918 + 0.957655i \(0.407037\pi\)
\(692\) 19.4164i 0.738101i
\(693\) 0 0
\(694\) 7.23607 0.274677
\(695\) −2.47934 14.9200i −0.0940468 0.565948i
\(696\) 0 0
\(697\) 16.8415 + 5.47214i 0.637917 + 0.207272i
\(698\) −0.106001 + 0.145898i −0.00401220 + 0.00552232i
\(699\) 0 0
\(700\) 1.99885 + 5.84818i 0.0755493 + 0.221040i
\(701\) −8.03444 24.7275i −0.303457 0.933944i −0.980249 0.197769i \(-0.936630\pi\)
0.676792 0.736174i \(-0.263370\pi\)
\(702\) 0 0
\(703\) 15.7771i 0.595044i
\(704\) −3.30902 + 0.224514i −0.124713 + 0.00846169i
\(705\) 0 0
\(706\) −8.54508 + 6.20837i −0.321599 + 0.233655i
\(707\) −1.00406 + 0.326238i −0.0377615 + 0.0122694i
\(708\) 0 0
\(709\) −36.8885 26.8011i −1.38538 1.00654i −0.996355 0.0853086i \(-0.972812\pi\)
−0.389024 0.921228i \(-0.627188\pi\)
\(710\) 1.75987 + 3.39008i 0.0660469 + 0.127227i
\(711\) 0 0
\(712\) 8.05748 2.61803i 0.301967 0.0981150i
\(713\) −0.138757 0.190983i −0.00519650 0.00715237i
\(714\) 0 0
\(715\) 2.38232 + 3.91570i 0.0890938 + 0.146439i
\(716\) −15.2705 −0.570686
\(717\) 0 0
\(718\) 16.2210 5.27051i 0.605361 0.196694i
\(719\) −8.61803 + 26.5236i −0.321398 + 0.989163i 0.651642 + 0.758527i \(0.274081\pi\)
−0.973040 + 0.230636i \(0.925919\pi\)
\(720\) 0 0
\(721\) −17.4164 12.6538i −0.648621 0.471251i
\(722\) −12.2577 3.98278i −0.456186 0.148224i
\(723\) 0 0
\(724\) 16.0902 11.6902i 0.597986 0.434463i
\(725\) −21.2705 28.3607i −0.789967 1.05329i
\(726\) 0 0
\(727\) 2.18034i 0.0808643i 0.999182 + 0.0404322i \(0.0128735\pi\)
−0.999182 + 0.0404322i \(0.987127\pi\)
\(728\) 0.449028 + 0.618034i 0.0166421 + 0.0229059i
\(729\) 0 0
\(730\) −13.0321 12.8357i −0.482338 0.475070i
\(731\) 12.5902 + 9.14729i 0.465664 + 0.338325i
\(732\) 0 0
\(733\) 42.1038 + 13.6803i 1.55514 + 0.505295i 0.955504 0.294979i \(-0.0953128\pi\)
0.599634 + 0.800274i \(0.295313\pi\)
\(734\) 8.79837 + 27.0786i 0.324754 + 0.999490i
\(735\) 0 0
\(736\) −1.61803 −0.0596415
\(737\) −2.43690 + 3.88197i −0.0897643 + 0.142994i
\(738\) 0 0
\(739\) 17.4721 12.6942i 0.642723 0.466966i −0.218062 0.975935i \(-0.569973\pi\)
0.860785 + 0.508969i \(0.169973\pi\)
\(740\) 2.12534 14.1114i 0.0781290 0.518744i
\(741\) 0 0
\(742\) −4.91428 + 6.76393i −0.180409 + 0.248312i
\(743\) 16.5842 22.8262i 0.608416 0.837413i −0.388030 0.921647i \(-0.626844\pi\)
0.996446 + 0.0842335i \(0.0268442\pi\)
\(744\) 0 0
\(745\) −15.8005 2.37975i −0.578886 0.0871871i
\(746\) 7.61803 5.53483i 0.278916 0.202644i
\(747\) 0 0
\(748\) 0.363271 + 5.35410i 0.0132825 + 0.195765i
\(749\) 21.8885 0.799790
\(750\) 0 0
\(751\) −10.5000 32.3157i −0.383150 1.17922i −0.937813 0.347141i \(-0.887153\pi\)
0.554663 0.832075i \(-0.312847\pi\)
\(752\) 6.01661 + 1.95492i 0.219403 + 0.0712884i
\(753\) 0 0
\(754\) −3.54508 2.57565i −0.129104 0.0937998i
\(755\) 24.5598 + 24.1897i 0.893823 + 0.880355i
\(756\) 0 0
\(757\) −12.1595 16.7361i −0.441943 0.608283i 0.528699 0.848809i \(-0.322680\pi\)
−0.970643 + 0.240526i \(0.922680\pi\)
\(758\) 32.6525i 1.18599i
\(759\) 0 0
\(760\) 4.94427 + 2.47214i 0.179348 + 0.0896738i
\(761\) 1.23607 0.898056i 0.0448074 0.0325545i −0.565156 0.824984i \(-0.691184\pi\)
0.609964 + 0.792429i \(0.291184\pi\)
\(762\) 0 0
\(763\) 15.2169 + 4.94427i 0.550889 + 0.178995i
\(764\) −3.61803 2.62866i −0.130896 0.0951014i
\(765\) 0 0
\(766\) −5.57295 + 17.1518i −0.201359 + 0.619719i
\(767\) 4.20025 1.36475i 0.151662 0.0492781i
\(768\) 0 0
\(769\) 13.0344 0.470034 0.235017 0.971991i \(-0.424485\pi\)
0.235017 + 0.971991i \(0.424485\pi\)
\(770\) −2.11141 8.92045i −0.0760900 0.321471i
\(771\) 0 0
\(772\) −4.14725 5.70820i −0.149263 0.205443i
\(773\) −41.1199 + 13.3607i −1.47898 + 0.480550i −0.933808 0.357773i \(-0.883536\pi\)
−0.545173 + 0.838323i \(0.683536\pi\)
\(774\) 0 0
\(775\) 0.0110751 + 0.729406i 0.000397830 + 0.0262010i
\(776\) 2.61803 + 1.90211i 0.0939819 + 0.0682819i
\(777\) 0 0
\(778\) 2.99193 0.972136i 0.107266 0.0348528i
\(779\) −21.8885 + 15.9030i −0.784238 + 0.569783i
\(780\) 0 0
\(781\) −2.11146 5.25731i −0.0755538 0.188121i
\(782\) 2.61803i 0.0936207i
\(783\) 0 0
\(784\) 1.69098 + 5.20431i 0.0603923 + 0.185868i
\(785\) −9.64347 + 9.79101i −0.344190 + 0.349456i
\(786\) 0 0
\(787\) 29.2707 40.2877i 1.04339 1.43610i 0.148987 0.988839i \(-0.452399\pi\)
0.894402 0.447263i \(-0.147601\pi\)
\(788\) 10.2371 + 3.32624i 0.364682 + 0.118492i
\(789\) 0 0
\(790\) −21.2156 + 3.52552i −0.754819 + 0.125433i
\(791\) −12.1803 −0.433083
\(792\) 0 0
\(793\) 1.70820i 0.0606601i
\(794\) −4.54508 + 3.30220i −0.161299 + 0.117191i
\(795\) 0 0
\(796\) 2.79180 8.59226i 0.0989526 0.304545i
\(797\) −1.79611 + 2.47214i −0.0636215 + 0.0875675i −0.839642 0.543140i \(-0.817235\pi\)
0.776021 + 0.630708i \(0.217235\pi\)
\(798\) 0 0
\(799\) 3.16312 9.73508i 0.111903 0.344402i
\(800\) 4.08924 + 2.87718i 0.144576 + 0.101724i
\(801\) 0 0
\(802\) 30.3607i 1.07207i
\(803\) 17.3965 + 20.8197i 0.613910 + 0.734710i
\(804\) 0 0
\(805\) −0.733107 4.41164i −0.0258386 0.155490i
\(806\) 0.0278640 + 0.0857567i 0.000981469 + 0.00302065i
\(807\) 0 0
\(808\) −0.502029 + 0.690983i −0.0176613 + 0.0243087i
\(809\) 33.2705 + 24.1724i 1.16973 + 0.849858i 0.990976 0.134036i \(-0.0427939\pi\)
0.178752 + 0.983894i \(0.442794\pi\)
\(810\) 0 0
\(811\) −5.20163 16.0090i −0.182654 0.562151i 0.817246 0.576289i \(-0.195500\pi\)
−0.999900 + 0.0141380i \(0.995500\pi\)
\(812\) 5.15131 + 7.09017i 0.180776 + 0.248816i
\(813\) 0 0
\(814\) −5.16312 + 20.5272i −0.180967 + 0.719479i
\(815\) 40.5410 + 20.2705i 1.42009 + 0.710045i
\(816\) 0 0
\(817\) −22.6134 + 7.34752i −0.791141 + 0.257057i
\(818\) 20.7845 + 6.75329i 0.726713 + 0.236123i
\(819\) 0 0
\(820\) −21.7199 + 11.2753i −0.758491 + 0.393751i
\(821\) −8.61803 + 26.5236i −0.300771 + 0.925679i 0.680450 + 0.732795i \(0.261784\pi\)
−0.981221 + 0.192885i \(0.938216\pi\)
\(822\) 0 0
\(823\) 20.0252 + 27.5623i 0.698034 + 0.960762i 0.999972 + 0.00743409i \(0.00236637\pi\)
−0.301938 + 0.953327i \(0.597634\pi\)
\(824\) −17.4164 −0.606729
\(825\) 0 0
\(826\) −8.83282 −0.307333
\(827\) −17.9516 24.7082i −0.624237 0.859188i 0.373416 0.927664i \(-0.378186\pi\)
−0.997653 + 0.0684756i \(0.978186\pi\)
\(828\) 0 0
\(829\) 3.03444 9.33905i 0.105391 0.324359i −0.884431 0.466670i \(-0.845453\pi\)
0.989822 + 0.142312i \(0.0454535\pi\)
\(830\) −5.48526 + 2.84754i −0.190396 + 0.0988395i
\(831\) 0 0
\(832\) 0.587785 + 0.190983i 0.0203778 + 0.00662114i
\(833\) 8.42075 2.73607i 0.291762 0.0947991i
\(834\) 0 0
\(835\) −18.1803 9.09017i −0.629157 0.314578i
\(836\) −6.94427 4.35926i −0.240173 0.150768i
\(837\) 0 0
\(838\) 20.3152 + 27.9615i 0.701777 + 0.965914i
\(839\) 6.38197 + 19.6417i 0.220330 + 0.678106i 0.998732 + 0.0503399i \(0.0160305\pi\)
−0.778402 + 0.627766i \(0.783970\pi\)
\(840\) 0 0
\(841\) −17.2082 12.5025i −0.593386 0.431120i
\(842\) 3.86974 5.32624i 0.133360 0.183554i
\(843\) 0 0
\(844\) −3.76393 11.5842i −0.129560 0.398744i
\(845\) 4.62518 + 27.8331i 0.159111 + 0.957488i
\(846\) 0 0
\(847\) 1.83660 + 13.4721i 0.0631063 + 0.462908i
\(848\) 6.76393i 0.232274i
\(849\) 0 0
\(850\) 4.65537 6.61653i 0.159678 0.226945i
\(851\) −3.19098 + 9.82084i −0.109385 + 0.336654i
\(852\) 0 0
\(853\) 15.2824 21.0344i 0.523260 0.720206i −0.462825 0.886450i \(-0.653164\pi\)
0.986085 + 0.166244i \(0.0531640\pi\)
\(854\) −1.05573 + 3.24920i −0.0361263 + 0.111185i
\(855\) 0 0
\(856\) 14.3262 10.4086i 0.489661 0.355759i
\(857\) 32.4508i 1.10850i −0.832350 0.554250i \(-0.813005\pi\)
0.832350 0.554250i \(-0.186995\pi\)
\(858\) 0 0
\(859\) −18.7639 −0.640217 −0.320109 0.947381i \(-0.603719\pi\)
−0.320109 + 0.947381i \(0.603719\pi\)
\(860\) −21.2156 + 3.52552i −0.723447 + 0.120219i
\(861\) 0 0
\(862\) −35.1361 11.4164i −1.19674 0.388844i
\(863\) 31.1729 42.9058i 1.06114 1.46053i 0.182399 0.983225i \(-0.441614\pi\)
0.878738 0.477305i \(-0.158386\pi\)
\(864\) 0 0
\(865\) −30.4661 + 30.9322i −1.03588 + 1.05173i
\(866\) 7.85410 + 24.1724i 0.266893 + 0.821413i
\(867\) 0 0
\(868\) 0.180340i 0.00612113i
\(869\) 31.8262 2.15938i 1.07963 0.0732521i
\(870\) 0 0
\(871\) 0.690983 0.502029i 0.0234131 0.0170106i
\(872\) 12.3107 4.00000i 0.416894 0.135457i
\(873\) 0 0
\(874\) −3.23607 2.35114i −0.109462 0.0795285i
\(875\) −5.99197 + 12.4531i −0.202565 + 0.420991i
\(876\) 0 0
\(877\) 38.6426 12.5557i 1.30487 0.423977i 0.427595 0.903971i \(-0.359361\pi\)
0.877272 + 0.479994i \(0.159361\pi\)
\(878\) −21.8415 30.0623i −0.737116 1.01455i
\(879\) 0 0
\(880\) −5.62386 4.83447i −0.189580 0.162970i
\(881\) 20.6525 0.695800 0.347900 0.937532i \(-0.386895\pi\)
0.347900 + 0.937532i \(0.386895\pi\)
\(882\) 0 0
\(883\) 36.6749 11.9164i 1.23421 0.401019i 0.381972 0.924174i \(-0.375245\pi\)
0.852238 + 0.523155i \(0.175245\pi\)
\(884\) 0.309017 0.951057i 0.0103934 0.0319875i
\(885\) 0 0
\(886\) 32.4164 + 23.5519i 1.08905 + 0.791242i
\(887\) 50.0552 + 16.2639i 1.68069 + 0.546089i 0.985045 0.172296i \(-0.0551186\pi\)
0.695645 + 0.718386i \(0.255119\pi\)
\(888\) 0 0
\(889\) 8.00000 5.81234i 0.268311 0.194940i
\(890\) 16.9443 + 8.47214i 0.567973 + 0.283987i
\(891\) 0 0
\(892\) 3.81966i 0.127892i
\(893\) 9.19256 + 12.6525i 0.307617 + 0.423399i
\(894\) 0 0
\(895\) −24.3274 23.9608i −0.813175 0.800922i
\(896\) −1.00000 0.726543i −0.0334077 0.0242721i
\(897\) 0 0
\(898\) −11.9677 3.88854i −0.399368 0.129762i
\(899\) 0.319660 + 0.983813i 0.0106613 + 0.0328120i
\(900\) 0 0
\(901\) 10.9443 0.364607
\(902\) 33.6830 13.5279i 1.12152 0.450429i
\(903\) 0 0
\(904\) −7.97214 + 5.79210i −0.265149 + 0.192642i
\(905\) 43.9762 + 6.62333i 1.46182 + 0.220167i
\(906\) 0 0
\(907\) −22.5604 + 31.0517i −0.749104 + 1.03105i 0.248939 + 0.968519i \(0.419918\pi\)
−0.998043 + 0.0625343i \(0.980082\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −0.254407 + 1.68915i −0.00843350 + 0.0559949i
\(911\) 15.8541 11.5187i 0.525270 0.381631i −0.293316 0.956016i \(-0.594759\pi\)
0.818585 + 0.574385i \(0.194759\pi\)
\(912\) 0 0
\(913\) 8.50651 3.41641i 0.281524 0.113067i
\(914\) 30.7639 1.01758
\(915\) 0 0
\(916\) 6.05573 + 18.6376i 0.200087 + 0.615804i
\(917\) −4.53077 1.47214i −0.149619 0.0486142i
\(918\) 0 0
\(919\) 17.3090 + 12.5757i 0.570972 + 0.414835i 0.835458 0.549554i \(-0.185202\pi\)
−0.264486 + 0.964389i \(0.585202\pi\)
\(920\) −2.57768 2.53884i −0.0849837 0.0837031i
\(921\) 0 0
\(922\) 5.54734 + 7.63525i 0.182692 + 0.251454i
\(923\) 1.05573i 0.0347497i
\(924\) 0 0
\(925\) 25.5279 19.1459i 0.839351 0.629513i
\(926\) −18.5623 + 13.4863i −0.609995 + 0.443187i
\(927\) 0 0
\(928\) 6.74315 + 2.19098i 0.221355 + 0.0719225i
\(929\) 16.7984 + 12.2047i 0.551137 + 0.400424i 0.828204 0.560426i \(-0.189363\pi\)
−0.277068 + 0.960850i \(0.589363\pi\)
\(930\) 0 0
\(931\) −4.18034 + 12.8658i −0.137005 + 0.421658i
\(932\) −20.7845 + 6.75329i −0.680818 + 0.221211i
\(933\) 0 0
\(934\) 9.05573 0.296312
\(935\) −7.82234 + 9.09960i −0.255818 + 0.297589i
\(936\) 0 0
\(937\) −31.9524 43.9787i −1.04384 1.43672i −0.894030 0.448007i \(-0.852134\pi\)
−0.149810 0.988715i \(-0.547866\pi\)
\(938\) −1.62460 + 0.527864i −0.0530450 + 0.0172354i
\(939\) 0 0
\(940\) 6.51760 + 12.5550i 0.212581 + 0.409498i
\(941\) −3.02786 2.19987i −0.0987055 0.0717138i 0.537338 0.843367i \(-0.319430\pi\)
−0.636043 + 0.771653i \(0.719430\pi\)
\(942\) 0 0
\(943\) 16.8415 5.47214i 0.548435 0.178197i
\(944\) −5.78115 + 4.20025i −0.188161 + 0.136707i
\(945\) 0 0
\(946\) 31.8262 2.15938i 1.03476 0.0702076i
\(947\) 3.12461i 0.101536i 0.998710 + 0.0507681i \(0.0161669\pi\)
−0.998710 + 0.0507681i \(0.983833\pi\)
\(948\) 0 0
\(949\) −1.56231 4.80828i −0.0507146 0.156083i
\(950\) 3.99769 + 11.6964i 0.129702 + 0.379480i
\(951\) 0 0
\(952\) −1.17557 + 1.61803i −0.0381005 + 0.0524408i
\(953\) −26.5033 8.61146i −0.858527 0.278952i −0.153514 0.988146i \(-0.549059\pi\)
−0.705013 + 0.709194i \(0.749059\pi\)
\(954\) 0 0
\(955\) −1.63928 9.86472i −0.0530458 0.319215i
\(956\) 5.81966 0.188221
\(957\) 0 0
\(958\) 30.9443i 0.999764i
\(959\) −9.56231 + 6.94742i −0.308783 + 0.224344i
\(960\) 0 0
\(961\) −9.57295 + 29.4625i −0.308805 + 0.950403i
\(962\) 2.31838 3.19098i 0.0747477 0.102881i
\(963\) 0 0
\(964\) −4.61803 + 14.2128i −0.148737 + 0.457765i
\(965\) 2.34972 15.6011i 0.0756400 0.502218i
\(966\) 0 0
\(967\) 26.2918i 0.845487i −0.906249 0.422744i \(-0.861067\pi\)
0.906249 0.422744i \(-0.138933\pi\)
\(968\) 7.60845 + 7.94427i 0.244545 + 0.255339i
\(969\) 0 0
\(970\) 1.18619 + 7.13818i 0.0380863 + 0.229193i
\(971\) 11.4164 + 35.1361i 0.366370 + 1.12757i 0.949119 + 0.314918i \(0.101977\pi\)
−0.582749 + 0.812652i \(0.698023\pi\)
\(972\) 0 0
\(973\) −4.91428 + 6.76393i −0.157545 + 0.216842i
\(974\) −1.00000 0.726543i −0.0320421 0.0232799i
\(975\) 0 0
\(976\) 0.854102 + 2.62866i 0.0273391 + 0.0841412i
\(977\) 7.88597 + 10.8541i 0.252294 + 0.347253i 0.916313 0.400462i \(-0.131151\pi\)
−0.664019 + 0.747716i \(0.731151\pi\)
\(978\) 0 0
\(979\) −23.7984 14.9394i −0.760599 0.477465i
\(980\) −5.47214 + 10.9443i −0.174801 + 0.349602i
\(981\) 0 0
\(982\) −37.0710 + 12.0451i −1.18298 + 0.384374i
\(983\) −26.4176 8.58359i −0.842590 0.273774i −0.144251 0.989541i \(-0.546077\pi\)
−0.698339 + 0.715767i \(0.746077\pi\)
\(984\) 0 0
\(985\) 11.0895 + 21.3620i 0.353342 + 0.680649i
\(986\) 3.54508 10.9106i 0.112899 0.347466i
\(987\) 0 0
\(988\) 0.898056 + 1.23607i 0.0285710 + 0.0393246i
\(989\) 15.5623 0.494853
\(990\) 0 0
\(991\) −5.03444 −0.159924 −0.0799622 0.996798i \(-0.525480\pi\)
−0.0799622 + 0.996798i \(0.525480\pi\)
\(992\) −0.0857567 0.118034i −0.00272278 0.00374758i
\(993\) 0 0
\(994\) 0.652476 2.00811i 0.0206953 0.0636935i
\(995\) 17.9296 9.30772i 0.568408 0.295075i
\(996\) 0 0
\(997\) −21.6295 7.02786i −0.685014 0.222575i −0.0542250 0.998529i \(-0.517269\pi\)
−0.630789 + 0.775954i \(0.717269\pi\)
\(998\) −15.6659 + 5.09017i −0.495896 + 0.161127i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.ba.c.289.1 8
3.2 odd 2 990.2.ba.e.289.2 yes 8
5.4 even 2 inner 990.2.ba.c.289.2 yes 8
11.4 even 5 inner 990.2.ba.c.829.2 yes 8
15.14 odd 2 990.2.ba.e.289.1 yes 8
33.26 odd 10 990.2.ba.e.829.1 yes 8
55.4 even 10 inner 990.2.ba.c.829.1 yes 8
165.59 odd 10 990.2.ba.e.829.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.ba.c.289.1 8 1.1 even 1 trivial
990.2.ba.c.289.2 yes 8 5.4 even 2 inner
990.2.ba.c.829.1 yes 8 55.4 even 10 inner
990.2.ba.c.829.2 yes 8 11.4 even 5 inner
990.2.ba.e.289.1 yes 8 15.14 odd 2
990.2.ba.e.289.2 yes 8 3.2 odd 2
990.2.ba.e.829.1 yes 8 33.26 odd 10
990.2.ba.e.829.2 yes 8 165.59 odd 10