Properties

Label 980.2.x.j.263.1
Level $980$
Weight $2$
Character 980.263
Analytic conductor $7.825$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(67,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,4,0,0,0,0,0,16,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 263.1
Character \(\chi\) \(=\) 980.263
Dual form 980.2.x.j.667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34206 + 0.445955i) q^{2} +(-0.815107 - 3.04202i) q^{3} +(1.60225 - 1.19700i) q^{4} +(0.727838 + 2.11430i) q^{5} +(2.45053 + 3.71907i) q^{6} +(-1.61650 + 2.32097i) q^{8} +(-5.99142 + 3.45915i) q^{9} +(-1.91968 - 2.51293i) q^{10} +(3.44275 + 1.98767i) q^{11} +(-4.94729 - 3.89839i) q^{12} +(-2.52606 - 2.52606i) q^{13} +(5.83847 - 3.93748i) q^{15} +(1.13440 - 3.83577i) q^{16} +(-0.277420 - 1.03535i) q^{17} +(6.49821 - 7.31428i) q^{18} +(0.658126 + 1.13991i) q^{19} +(3.69698 + 2.51641i) q^{20} +(-5.50679 - 1.13226i) q^{22} +(5.02084 + 1.34533i) q^{23} +(8.37807 + 3.02560i) q^{24} +(-3.94050 + 3.07773i) q^{25} +(4.51663 + 2.26361i) q^{26} +(8.72570 + 8.72570i) q^{27} +4.50936i q^{29} +(-6.07964 + 7.88803i) q^{30} +(2.23010 + 1.28755i) q^{31} +(0.188156 + 5.65372i) q^{32} +(3.24033 - 12.0931i) q^{33} +(0.834032 + 1.26578i) q^{34} +(-5.45915 + 12.7141i) q^{36} +(7.29473 + 1.95462i) q^{37} +(-1.39159 - 1.23633i) q^{38} +(-5.62531 + 9.74333i) q^{39} +(-6.08378 - 1.72848i) q^{40} +11.3180 q^{41} +(1.77452 - 1.77452i) q^{43} +(7.89537 - 0.936217i) q^{44} +(-11.6744 - 10.1499i) q^{45} +(-7.33822 + 0.433557i) q^{46} +(1.76949 - 6.60383i) q^{47} +(-12.5932 - 0.324292i) q^{48} +(3.91586 - 5.88779i) q^{50} +(-2.92342 + 1.68784i) q^{51} +(-7.07105 - 1.02369i) q^{52} +(-8.08454 + 2.16624i) q^{53} +(-15.6017 - 7.81913i) q^{54} +(-1.69676 + 8.72570i) q^{55} +(2.93118 - 2.93118i) q^{57} +(-2.01097 - 6.05182i) q^{58} +(4.17259 - 7.22714i) q^{59} +(4.64153 - 13.2974i) q^{60} +(0.673601 + 1.16671i) q^{61} +(-3.56712 - 0.733444i) q^{62} +(-2.77382 - 7.50373i) q^{64} +(3.50228 - 7.17940i) q^{65} +(1.04426 + 17.6747i) q^{66} +(5.32697 - 1.42736i) q^{67} +(-1.68380 - 1.32681i) q^{68} -16.3701i q^{69} +3.47330i q^{71} +(1.65657 - 19.4976i) q^{72} +(2.33220 - 0.624911i) q^{73} +(-10.6616 + 0.629911i) q^{74} +(12.5745 + 9.47841i) q^{75} +(2.41895 + 1.03864i) q^{76} +(3.20442 - 15.5848i) q^{78} +(-1.72570 - 2.98900i) q^{79} +(8.93562 - 0.393371i) q^{80} +(9.05394 - 15.6819i) q^{81} +(-15.1894 + 5.04730i) q^{82} +(8.37751 - 8.37751i) q^{83} +(1.98711 - 1.34011i) q^{85} +(-1.59015 + 3.17286i) q^{86} +(13.7176 - 3.67561i) q^{87} +(-10.1785 + 4.77744i) q^{88} +(8.15730 - 4.70962i) q^{89} +(20.1942 + 8.41554i) q^{90} +(9.65498 - 3.85438i) q^{92} +(2.09898 - 7.83352i) q^{93} +(0.570251 + 9.65185i) q^{94} +(-1.93109 + 2.22114i) q^{95} +(17.0454 - 5.18076i) q^{96} +(-9.04418 + 9.04418i) q^{97} -27.5026 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 4 q^{2} + 16 q^{8} - 8 q^{16} + 40 q^{18} - 72 q^{22} - 32 q^{25} + 36 q^{30} - 16 q^{32} - 176 q^{36} + 48 q^{37} + 56 q^{50} - 16 q^{53} - 32 q^{57} - 36 q^{58} + 80 q^{60} - 64 q^{65} - 56 q^{72}+ \cdots - 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34206 + 0.445955i −0.948979 + 0.315338i
\(3\) −0.815107 3.04202i −0.470602 1.75631i −0.637613 0.770357i \(-0.720078\pi\)
0.167011 0.985955i \(-0.446588\pi\)
\(4\) 1.60225 1.19700i 0.801124 0.598499i
\(5\) 0.727838 + 2.11430i 0.325499 + 0.945542i
\(6\) 2.45053 + 3.71907i 1.00042 + 1.51830i
\(7\) 0 0
\(8\) −1.61650 + 2.32097i −0.571521 + 0.820588i
\(9\) −5.99142 + 3.45915i −1.99714 + 1.15305i
\(10\) −1.91968 2.51293i −0.607057 0.794658i
\(11\) 3.44275 + 1.98767i 1.03803 + 0.599306i 0.919274 0.393618i \(-0.128777\pi\)
0.118754 + 0.992924i \(0.462110\pi\)
\(12\) −4.94729 3.89839i −1.42816 1.12537i
\(13\) −2.52606 2.52606i −0.700602 0.700602i 0.263937 0.964540i \(-0.414979\pi\)
−0.964540 + 0.263937i \(0.914979\pi\)
\(14\) 0 0
\(15\) 5.83847 3.93748i 1.50749 1.01665i
\(16\) 1.13440 3.83577i 0.283599 0.958943i
\(17\) −0.277420 1.03535i −0.0672843 0.251108i 0.924089 0.382177i \(-0.124826\pi\)
−0.991373 + 0.131069i \(0.958159\pi\)
\(18\) 6.49821 7.31428i 1.53164 1.72399i
\(19\) 0.658126 + 1.13991i 0.150984 + 0.261513i 0.931590 0.363512i \(-0.118422\pi\)
−0.780605 + 0.625024i \(0.785089\pi\)
\(20\) 3.69698 + 2.51641i 0.826671 + 0.562686i
\(21\) 0 0
\(22\) −5.50679 1.13226i −1.17405 0.241399i
\(23\) 5.02084 + 1.34533i 1.04692 + 0.280521i 0.740977 0.671530i \(-0.234363\pi\)
0.305940 + 0.952051i \(0.401029\pi\)
\(24\) 8.37807 + 3.02560i 1.71017 + 0.617598i
\(25\) −3.94050 + 3.07773i −0.788101 + 0.615546i
\(26\) 4.51663 + 2.26361i 0.885784 + 0.443931i
\(27\) 8.72570 + 8.72570i 1.67926 + 1.67926i
\(28\) 0 0
\(29\) 4.50936i 0.837366i 0.908132 + 0.418683i \(0.137508\pi\)
−0.908132 + 0.418683i \(0.862492\pi\)
\(30\) −6.07964 + 7.88803i −1.10998 + 1.44015i
\(31\) 2.23010 + 1.28755i 0.400539 + 0.231251i 0.686716 0.726925i \(-0.259051\pi\)
−0.286178 + 0.958177i \(0.592385\pi\)
\(32\) 0.188156 + 5.65372i 0.0332615 + 0.999447i
\(33\) 3.24033 12.0931i 0.564069 2.10513i
\(34\) 0.834032 + 1.26578i 0.143035 + 0.217079i
\(35\) 0 0
\(36\) −5.45915 + 12.7141i −0.909858 + 2.11902i
\(37\) 7.29473 + 1.95462i 1.19925 + 0.321337i 0.802534 0.596606i \(-0.203485\pi\)
0.396712 + 0.917943i \(0.370151\pi\)
\(38\) −1.39159 1.23633i −0.225746 0.200559i
\(39\) −5.62531 + 9.74333i −0.900771 + 1.56018i
\(40\) −6.08378 1.72848i −0.961930 0.273297i
\(41\) 11.3180 1.76757 0.883784 0.467894i \(-0.154987\pi\)
0.883784 + 0.467894i \(0.154987\pi\)
\(42\) 0 0
\(43\) 1.77452 1.77452i 0.270611 0.270611i −0.558735 0.829346i \(-0.688713\pi\)
0.829346 + 0.558735i \(0.188713\pi\)
\(44\) 7.89537 0.936217i 1.19027 0.141140i
\(45\) −11.6744 10.1499i −1.74032 1.51306i
\(46\) −7.33822 + 0.433557i −1.08196 + 0.0639245i
\(47\) 1.76949 6.60383i 0.258107 0.963268i −0.708229 0.705983i \(-0.750505\pi\)
0.966336 0.257285i \(-0.0828279\pi\)
\(48\) −12.5932 0.324292i −1.81766 0.0468075i
\(49\) 0 0
\(50\) 3.91586 5.88779i 0.553786 0.832659i
\(51\) −2.92342 + 1.68784i −0.409360 + 0.236344i
\(52\) −7.07105 1.02369i −0.980579 0.141960i
\(53\) −8.08454 + 2.16624i −1.11050 + 0.297557i −0.767032 0.641609i \(-0.778267\pi\)
−0.343465 + 0.939166i \(0.611601\pi\)
\(54\) −15.6017 7.81913i −2.12312 1.06405i
\(55\) −1.69676 + 8.72570i −0.228792 + 1.17657i
\(56\) 0 0
\(57\) 2.93118 2.93118i 0.388244 0.388244i
\(58\) −2.01097 6.05182i −0.264053 0.794643i
\(59\) 4.17259 7.22714i 0.543225 0.940893i −0.455491 0.890240i \(-0.650536\pi\)
0.998716 0.0506532i \(-0.0161303\pi\)
\(60\) 4.64153 13.2974i 0.599218 1.71669i
\(61\) 0.673601 + 1.16671i 0.0862458 + 0.149382i 0.905921 0.423446i \(-0.139180\pi\)
−0.819676 + 0.572828i \(0.805846\pi\)
\(62\) −3.56712 0.733444i −0.453025 0.0931475i
\(63\) 0 0
\(64\) −2.77382 7.50373i −0.346728 0.937966i
\(65\) 3.50228 7.17940i 0.434404 0.890495i
\(66\) 1.04426 + 17.6747i 0.128539 + 2.17560i
\(67\) 5.32697 1.42736i 0.650793 0.174379i 0.0817054 0.996657i \(-0.473963\pi\)
0.569087 + 0.822277i \(0.307297\pi\)
\(68\) −1.68380 1.32681i −0.204191 0.160899i
\(69\) 16.3701i 1.97073i
\(70\) 0 0
\(71\) 3.47330i 0.412205i 0.978530 + 0.206102i \(0.0660780\pi\)
−0.978530 + 0.206102i \(0.933922\pi\)
\(72\) 1.65657 19.4976i 0.195229 2.29782i
\(73\) 2.33220 0.624911i 0.272963 0.0731403i −0.119741 0.992805i \(-0.538206\pi\)
0.392704 + 0.919665i \(0.371540\pi\)
\(74\) −10.6616 + 0.629911i −1.23939 + 0.0732256i
\(75\) 12.5745 + 9.47841i 1.45197 + 1.09447i
\(76\) 2.41895 + 1.03864i 0.277472 + 0.119140i
\(77\) 0 0
\(78\) 3.20442 15.5848i 0.362829 1.76463i
\(79\) −1.72570 2.98900i −0.194157 0.336289i 0.752467 0.658630i \(-0.228864\pi\)
−0.946624 + 0.322341i \(0.895530\pi\)
\(80\) 8.93562 0.393371i 0.999032 0.0439802i
\(81\) 9.05394 15.6819i 1.00599 1.74243i
\(82\) −15.1894 + 5.04730i −1.67739 + 0.557382i
\(83\) 8.37751 8.37751i 0.919551 0.919551i −0.0774458 0.996997i \(-0.524676\pi\)
0.996997 + 0.0774458i \(0.0246765\pi\)
\(84\) 0 0
\(85\) 1.98711 1.34011i 0.215533 0.145356i
\(86\) −1.59015 + 3.17286i −0.171470 + 0.342138i
\(87\) 13.7176 3.67561i 1.47068 0.394066i
\(88\) −10.1785 + 4.77744i −1.08504 + 0.509277i
\(89\) 8.15730 4.70962i 0.864672 0.499219i −0.000902138 1.00000i \(-0.500287\pi\)
0.865574 + 0.500781i \(0.166954\pi\)
\(90\) 20.1942 + 8.41554i 2.12866 + 0.887076i
\(91\) 0 0
\(92\) 9.65498 3.85438i 1.00660 0.401846i
\(93\) 2.09898 7.83352i 0.217655 0.812298i
\(94\) 0.570251 + 9.65185i 0.0588169 + 0.995512i
\(95\) −1.93109 + 2.22114i −0.198126 + 0.227884i
\(96\) 17.0454 5.18076i 1.73969 0.528759i
\(97\) −9.04418 + 9.04418i −0.918298 + 0.918298i −0.996906 0.0786079i \(-0.974952\pi\)
0.0786079 + 0.996906i \(0.474952\pi\)
\(98\) 0 0
\(99\) −27.5026 −2.76411
\(100\) −2.62963 + 9.64806i −0.262963 + 0.964806i
\(101\) −5.13644 + 8.89658i −0.511095 + 0.885242i 0.488822 + 0.872383i \(0.337427\pi\)
−0.999917 + 0.0128590i \(0.995907\pi\)
\(102\) 3.17070 3.56889i 0.313946 0.353373i
\(103\) −4.03745 1.08183i −0.397821 0.106596i 0.0543611 0.998521i \(-0.482688\pi\)
−0.452183 + 0.891925i \(0.649354\pi\)
\(104\) 9.94629 1.77953i 0.975314 0.174497i
\(105\) 0 0
\(106\) 9.88388 6.51257i 0.960007 0.632557i
\(107\) 4.11801 15.3686i 0.398104 1.48574i −0.418326 0.908297i \(-0.637383\pi\)
0.816429 0.577446i \(-0.195950\pi\)
\(108\) 24.4254 + 3.53609i 2.35033 + 0.340261i
\(109\) 2.58551 + 1.49274i 0.247647 + 0.142979i 0.618686 0.785638i \(-0.287665\pi\)
−0.371040 + 0.928617i \(0.620999\pi\)
\(110\) −1.61411 12.4671i −0.153899 1.18869i
\(111\) 23.7839i 2.25747i
\(112\) 0 0
\(113\) −0.407307 0.407307i −0.0383162 0.0383162i 0.687689 0.726005i \(-0.258625\pi\)
−0.726005 + 0.687689i \(0.758625\pi\)
\(114\) −2.62664 + 5.24099i −0.246008 + 0.490864i
\(115\) 0.809931 + 11.5947i 0.0755265 + 1.08121i
\(116\) 5.39769 + 7.22511i 0.501163 + 0.670834i
\(117\) 23.8727 + 6.39666i 2.20703 + 0.591371i
\(118\) −2.37688 + 11.5600i −0.218810 + 1.06419i
\(119\) 0 0
\(120\) −0.299139 + 19.9159i −0.0273076 + 1.81806i
\(121\) 2.40168 + 4.15983i 0.218334 + 0.378166i
\(122\) −1.42431 1.26540i −0.128951 0.114564i
\(123\) −9.22535 34.4295i −0.831822 3.10440i
\(124\) 5.11438 0.606452i 0.459284 0.0544610i
\(125\) −9.37529 6.09130i −0.838551 0.544823i
\(126\) 0 0
\(127\) 10.3756 + 10.3756i 0.920687 + 0.920687i 0.997078 0.0763907i \(-0.0243396\pi\)
−0.0763907 + 0.997078i \(0.524340\pi\)
\(128\) 7.06896 + 8.83345i 0.624814 + 0.780774i
\(129\) −6.84453 3.95169i −0.602627 0.347927i
\(130\) −1.49857 + 11.1970i −0.131433 + 0.982045i
\(131\) −8.53900 + 4.92999i −0.746056 + 0.430736i −0.824267 0.566201i \(-0.808412\pi\)
0.0782112 + 0.996937i \(0.475079\pi\)
\(132\) −9.28357 23.2548i −0.808031 2.02407i
\(133\) 0 0
\(134\) −6.51257 + 4.29119i −0.562600 + 0.370702i
\(135\) −12.0978 + 24.7996i −1.04121 + 2.13441i
\(136\) 2.85146 + 1.02976i 0.244511 + 0.0883010i
\(137\) 4.17809 + 15.5929i 0.356958 + 1.33219i 0.878002 + 0.478657i \(0.158876\pi\)
−0.521044 + 0.853530i \(0.674457\pi\)
\(138\) 7.30032 + 21.9696i 0.621445 + 1.87018i
\(139\) −9.10621 −0.772379 −0.386189 0.922420i \(-0.626209\pi\)
−0.386189 + 0.922420i \(0.626209\pi\)
\(140\) 0 0
\(141\) −21.5313 −1.81326
\(142\) −1.54894 4.66137i −0.129984 0.391174i
\(143\) −3.67561 13.7176i −0.307370 1.14712i
\(144\) 6.47185 + 26.9057i 0.539321 + 2.24215i
\(145\) −9.53412 + 3.28208i −0.791765 + 0.272562i
\(146\) −2.85127 + 1.87872i −0.235973 + 0.155484i
\(147\) 0 0
\(148\) 14.0276 5.59999i 1.15306 0.460316i
\(149\) −1.70973 + 0.987112i −0.140066 + 0.0808674i −0.568396 0.822755i \(-0.692436\pi\)
0.428329 + 0.903623i \(0.359102\pi\)
\(150\) −21.1026 7.11295i −1.72302 0.580770i
\(151\) 7.47376 + 4.31498i 0.608206 + 0.351148i 0.772263 0.635303i \(-0.219125\pi\)
−0.164057 + 0.986451i \(0.552458\pi\)
\(152\) −3.70956 0.315174i −0.300885 0.0255640i
\(153\) 5.24355 + 5.24355i 0.423916 + 0.423916i
\(154\) 0 0
\(155\) −1.09911 + 5.65223i −0.0882827 + 0.453998i
\(156\) 2.64959 + 22.3447i 0.212137 + 1.78901i
\(157\) −4.10320 15.3134i −0.327471 1.22214i −0.911804 0.410625i \(-0.865311\pi\)
0.584333 0.811514i \(-0.301356\pi\)
\(158\) 3.64896 + 3.24184i 0.290295 + 0.257907i
\(159\) 13.1795 + 22.8276i 1.04520 + 1.81035i
\(160\) −11.8167 + 4.51281i −0.934193 + 0.356769i
\(161\) 0 0
\(162\) −5.15751 + 25.0837i −0.405212 + 1.97076i
\(163\) −6.72849 1.80289i −0.527016 0.141213i −0.0145060 0.999895i \(-0.504618\pi\)
−0.512510 + 0.858681i \(0.671284\pi\)
\(164\) 18.1342 13.5476i 1.41604 1.05789i
\(165\) 27.9268 1.95078i 2.17410 0.151868i
\(166\) −7.50712 + 14.9791i −0.582665 + 1.16260i
\(167\) 11.9207 + 11.9207i 0.922449 + 0.922449i 0.997202 0.0747528i \(-0.0238168\pi\)
−0.0747528 + 0.997202i \(0.523817\pi\)
\(168\) 0 0
\(169\) 0.238064i 0.0183127i
\(170\) −2.06919 + 2.68467i −0.158700 + 0.205905i
\(171\) −7.88621 4.55310i −0.603073 0.348185i
\(172\) 0.719123 4.96730i 0.0548327 0.378753i
\(173\) −0.0573054 + 0.213867i −0.00435685 + 0.0162600i −0.968070 0.250680i \(-0.919346\pi\)
0.963713 + 0.266940i \(0.0860125\pi\)
\(174\) −16.7706 + 11.0503i −1.27138 + 0.837721i
\(175\) 0 0
\(176\) 11.5297 10.9508i 0.869083 0.825447i
\(177\) −25.3862 6.80222i −1.90814 0.511286i
\(178\) −8.84730 + 9.95838i −0.663133 + 0.746412i
\(179\) 10.2023 17.6708i 0.762553 1.32078i −0.178978 0.983853i \(-0.557279\pi\)
0.941531 0.336927i \(-0.109388\pi\)
\(180\) −30.8548 2.28844i −2.29978 0.170570i
\(181\) 13.1697 0.978898 0.489449 0.872032i \(-0.337198\pi\)
0.489449 + 0.872032i \(0.337198\pi\)
\(182\) 0 0
\(183\) 3.00010 3.00010i 0.221774 0.221774i
\(184\) −11.2387 + 9.47849i −0.828526 + 0.698764i
\(185\) 1.17674 + 16.8459i 0.0865158 + 1.23853i
\(186\) 0.676436 + 11.4491i 0.0495987 + 0.839489i
\(187\) 1.10284 4.11586i 0.0806477 0.300981i
\(188\) −5.06960 12.6991i −0.369739 0.926174i
\(189\) 0 0
\(190\) 1.60111 3.84208i 0.116157 0.278734i
\(191\) 10.4817 6.05163i 0.758431 0.437880i −0.0703012 0.997526i \(-0.522396\pi\)
0.828732 + 0.559646i \(0.189063\pi\)
\(192\) −20.5655 + 14.5544i −1.48419 + 1.05037i
\(193\) −0.678188 + 0.181720i −0.0488170 + 0.0130805i −0.283145 0.959077i \(-0.591378\pi\)
0.234328 + 0.972158i \(0.424711\pi\)
\(194\) 8.10453 16.1711i 0.581871 1.16102i
\(195\) −24.6946 4.80202i −1.76842 0.343880i
\(196\) 0 0
\(197\) −1.16924 + 1.16924i −0.0833051 + 0.0833051i −0.747531 0.664226i \(-0.768761\pi\)
0.664226 + 0.747531i \(0.268761\pi\)
\(198\) 36.9101 12.2649i 2.62309 0.871630i
\(199\) −8.72570 + 15.1133i −0.618548 + 1.07136i 0.371203 + 0.928552i \(0.378946\pi\)
−0.989751 + 0.142805i \(0.954388\pi\)
\(200\) −0.773487 14.1210i −0.0546938 0.998503i
\(201\) −8.68410 15.0413i −0.612529 1.06093i
\(202\) 2.92593 14.2304i 0.205868 1.00124i
\(203\) 0 0
\(204\) −2.66370 + 6.20365i −0.186497 + 0.434343i
\(205\) 8.23764 + 23.9295i 0.575342 + 1.67131i
\(206\) 5.90094 0.348640i 0.411138 0.0242909i
\(207\) −34.7356 + 9.30738i −2.41429 + 0.646907i
\(208\) −12.5549 + 6.82383i −0.870528 + 0.473148i
\(209\) 5.23255i 0.361943i
\(210\) 0 0
\(211\) 6.32503i 0.435433i 0.976012 + 0.217717i \(0.0698608\pi\)
−0.976012 + 0.217717i \(0.930139\pi\)
\(212\) −10.3604 + 13.1480i −0.711558 + 0.903010i
\(213\) 10.5658 2.83111i 0.723960 0.193984i
\(214\) 1.32711 + 22.4621i 0.0907190 + 1.53548i
\(215\) 5.04341 + 2.46029i 0.343958 + 0.167791i
\(216\) −34.3572 + 6.14697i −2.33771 + 0.418248i
\(217\) 0 0
\(218\) −4.13560 0.850329i −0.280098 0.0575916i
\(219\) −3.80199 6.58523i −0.256914 0.444989i
\(220\) 7.72599 + 16.0117i 0.520886 + 1.07951i
\(221\) −1.91456 + 3.31612i −0.128788 + 0.223067i
\(222\) 10.6066 + 31.9195i 0.711867 + 2.14229i
\(223\) 1.13429 1.13429i 0.0759578 0.0759578i −0.668107 0.744065i \(-0.732895\pi\)
0.744065 + 0.668107i \(0.232895\pi\)
\(224\) 0 0
\(225\) 12.9629 32.0707i 0.864191 2.13805i
\(226\) 0.728271 + 0.364990i 0.0484439 + 0.0242788i
\(227\) −4.84005 + 1.29689i −0.321246 + 0.0860775i −0.415838 0.909439i \(-0.636512\pi\)
0.0945927 + 0.995516i \(0.469845\pi\)
\(228\) 1.18786 8.20509i 0.0786681 0.543395i
\(229\) 8.93604 5.15923i 0.590510 0.340931i −0.174789 0.984606i \(-0.555924\pi\)
0.765299 + 0.643675i \(0.222591\pi\)
\(230\) −6.25770 15.1996i −0.412621 1.00223i
\(231\) 0 0
\(232\) −10.4661 7.28940i −0.687132 0.478572i
\(233\) −3.30639 + 12.3396i −0.216609 + 0.808395i 0.768985 + 0.639267i \(0.220762\pi\)
−0.985594 + 0.169129i \(0.945905\pi\)
\(234\) −34.8912 + 2.06144i −2.28091 + 0.134761i
\(235\) 15.2504 1.06529i 0.994824 0.0694919i
\(236\) −1.96534 16.5742i −0.127933 1.07889i
\(237\) −7.68598 + 7.68598i −0.499258 + 0.499258i
\(238\) 0 0
\(239\) 19.1256 1.23713 0.618565 0.785733i \(-0.287714\pi\)
0.618565 + 0.785733i \(0.287714\pi\)
\(240\) −8.48013 26.8617i −0.547390 1.73391i
\(241\) 7.07911 12.2614i 0.456006 0.789825i −0.542740 0.839901i \(-0.682613\pi\)
0.998745 + 0.0500757i \(0.0159463\pi\)
\(242\) −5.07829 4.51169i −0.326445 0.290023i
\(243\) −19.3260 5.17838i −1.23976 0.332193i
\(244\) 2.47583 + 1.06306i 0.158499 + 0.0680556i
\(245\) 0 0
\(246\) 27.7350 + 42.0923i 1.76832 + 2.68371i
\(247\) 1.21701 4.54193i 0.0774363 0.288996i
\(248\) −6.59335 + 3.09468i −0.418678 + 0.196512i
\(249\) −32.3131 18.6560i −2.04776 1.18227i
\(250\) 15.2986 + 3.99393i 0.967571 + 0.252599i
\(251\) 8.70910i 0.549714i 0.961485 + 0.274857i \(0.0886305\pi\)
−0.961485 + 0.274857i \(0.911370\pi\)
\(252\) 0 0
\(253\) 14.6114 + 14.6114i 0.918611 + 0.918611i
\(254\) −18.5518 9.29764i −1.16404 0.583386i
\(255\) −5.69636 4.95250i −0.356720 0.310138i
\(256\) −13.4263 8.70257i −0.839143 0.543911i
\(257\) −5.76635 1.54509i −0.359695 0.0963799i 0.0744458 0.997225i \(-0.476281\pi\)
−0.434141 + 0.900845i \(0.642948\pi\)
\(258\) 10.9480 + 2.25105i 0.681596 + 0.140144i
\(259\) 0 0
\(260\) −2.98220 15.6954i −0.184949 0.973387i
\(261\) −15.5985 27.0174i −0.965524 1.67234i
\(262\) 9.26129 10.4244i 0.572164 0.644019i
\(263\) 4.09029 + 15.2652i 0.252218 + 0.941292i 0.969617 + 0.244629i \(0.0786661\pi\)
−0.717398 + 0.696663i \(0.754667\pi\)
\(264\) 22.8297 + 27.0692i 1.40507 + 1.66600i
\(265\) −10.4643 15.5164i −0.642818 0.953167i
\(266\) 0 0
\(267\) −20.9758 20.9758i −1.28370 1.28370i
\(268\) 6.82658 8.66334i 0.417000 0.529198i
\(269\) −6.92467 3.99796i −0.422205 0.243760i 0.273815 0.961782i \(-0.411714\pi\)
−0.696020 + 0.718022i \(0.745048\pi\)
\(270\) 5.17648 38.6776i 0.315030 2.35385i
\(271\) −26.0319 + 15.0295i −1.58133 + 0.912980i −0.586662 + 0.809832i \(0.699558\pi\)
−0.994666 + 0.103148i \(0.967108\pi\)
\(272\) −4.28606 0.110372i −0.259880 0.00669229i
\(273\) 0 0
\(274\) −12.5610 19.0633i −0.758835 1.15166i
\(275\) −19.6837 + 2.76343i −1.18697 + 0.166641i
\(276\) −19.5949 26.2289i −1.17948 1.57880i
\(277\) −0.639600 2.38702i −0.0384299 0.143422i 0.944045 0.329816i \(-0.106987\pi\)
−0.982475 + 0.186394i \(0.940320\pi\)
\(278\) 12.2211 4.06096i 0.732971 0.243560i
\(279\) −17.8153 −1.06657
\(280\) 0 0
\(281\) −2.85110 −0.170082 −0.0850411 0.996377i \(-0.527102\pi\)
−0.0850411 + 0.996377i \(0.527102\pi\)
\(282\) 28.8963 9.60201i 1.72075 0.571791i
\(283\) 2.23944 + 8.35771i 0.133121 + 0.496814i 0.999999 0.00170684i \(-0.000543303\pi\)
−0.866878 + 0.498521i \(0.833877\pi\)
\(284\) 4.15753 + 5.56508i 0.246704 + 0.330227i
\(285\) 8.33080 + 4.06396i 0.493474 + 0.240728i
\(286\) 11.0503 + 16.7706i 0.653418 + 0.991667i
\(287\) 0 0
\(288\) −20.6844 33.2230i −1.21884 1.95768i
\(289\) 13.7275 7.92555i 0.807497 0.466209i
\(290\) 11.3317 8.65654i 0.665420 0.508329i
\(291\) 34.8846 + 20.1406i 2.04497 + 1.18066i
\(292\) 2.98875 3.79290i 0.174903 0.221963i
\(293\) 16.5266 + 16.5266i 0.965497 + 0.965497i 0.999424 0.0339277i \(-0.0108016\pi\)
−0.0339277 + 0.999424i \(0.510802\pi\)
\(294\) 0 0
\(295\) 18.3173 + 3.56191i 1.06647 + 0.207382i
\(296\) −16.3286 + 13.7712i −0.949079 + 0.800436i
\(297\) 12.6966 + 47.3842i 0.736729 + 2.74951i
\(298\) 1.85435 2.08723i 0.107420 0.120910i
\(299\) −9.28454 16.0813i −0.536939 0.930006i
\(300\) 31.4930 + 0.135178i 1.81825 + 0.00780451i
\(301\) 0 0
\(302\) −11.9545 2.45799i −0.687905 0.141442i
\(303\) 31.2503 + 8.37350i 1.79528 + 0.481045i
\(304\) 5.11900 1.23131i 0.293595 0.0706207i
\(305\) −1.97650 + 2.27337i −0.113174 + 0.130173i
\(306\) −9.37555 4.69877i −0.535964 0.268611i
\(307\) −15.0259 15.0259i −0.857575 0.857575i 0.133477 0.991052i \(-0.457386\pi\)
−0.991052 + 0.133477i \(0.957386\pi\)
\(308\) 0 0
\(309\) 13.1638i 0.748863i
\(310\) −1.04557 8.07579i −0.0593844 0.458674i
\(311\) −24.3986 14.0866i −1.38352 0.798776i −0.390945 0.920414i \(-0.627852\pi\)
−0.992574 + 0.121638i \(0.961185\pi\)
\(312\) −13.5206 28.8063i −0.765456 1.63084i
\(313\) −6.64347 + 24.7938i −0.375511 + 1.40143i 0.477085 + 0.878857i \(0.341693\pi\)
−0.852597 + 0.522570i \(0.824973\pi\)
\(314\) 12.3358 + 18.7216i 0.696150 + 1.05652i
\(315\) 0 0
\(316\) −6.34283 2.72346i −0.356812 0.153207i
\(317\) 25.4060 + 6.80753i 1.42695 + 0.382349i 0.887942 0.459955i \(-0.152134\pi\)
0.539003 + 0.842304i \(0.318801\pi\)
\(318\) −27.8678 24.7585i −1.56275 1.38839i
\(319\) −8.96312 + 15.5246i −0.501838 + 0.869209i
\(320\) 13.8462 11.3262i 0.774027 0.633153i
\(321\) −50.1083 −2.79678
\(322\) 0 0
\(323\) 0.997621 0.997621i 0.0555091 0.0555091i
\(324\) −4.26451 35.9638i −0.236917 1.99799i
\(325\) 17.7285 + 2.17941i 0.983398 + 0.120892i
\(326\) 9.83404 0.581015i 0.544657 0.0321794i
\(327\) 2.43349 9.08191i 0.134572 0.502231i
\(328\) −18.2955 + 26.2687i −1.01020 + 1.45044i
\(329\) 0 0
\(330\) −36.6095 + 15.0722i −2.01528 + 0.829695i
\(331\) 14.8975 8.60110i 0.818843 0.472759i −0.0311741 0.999514i \(-0.509925\pi\)
0.850017 + 0.526755i \(0.176591\pi\)
\(332\) 3.39499 23.4507i 0.186324 1.28702i
\(333\) −50.4671 + 13.5226i −2.76558 + 0.741034i
\(334\) −21.3143 10.6822i −1.16627 0.584502i
\(335\) 6.89503 + 10.2239i 0.376715 + 0.558592i
\(336\) 0 0
\(337\) −12.9038 + 12.9038i −0.702913 + 0.702913i −0.965035 0.262121i \(-0.915578\pi\)
0.262121 + 0.965035i \(0.415578\pi\)
\(338\) 0.106166 + 0.319497i 0.00577468 + 0.0173783i
\(339\) −0.907038 + 1.57104i −0.0492635 + 0.0853270i
\(340\) 1.57973 4.52576i 0.0856732 0.245444i
\(341\) 5.11846 + 8.86543i 0.277180 + 0.480090i
\(342\) 12.6142 + 2.59364i 0.682100 + 0.140248i
\(343\) 0 0
\(344\) 1.25009 + 6.98711i 0.0674002 + 0.376720i
\(345\) 34.6112 11.9148i 1.86340 0.641469i
\(346\) −0.0184677 0.312578i −0.000992831 0.0168043i
\(347\) −18.2417 + 4.88784i −0.979264 + 0.262393i −0.712735 0.701434i \(-0.752544\pi\)
−0.266529 + 0.963827i \(0.585877\pi\)
\(348\) 17.5792 22.3091i 0.942346 1.19589i
\(349\) 22.9263i 1.22721i 0.789611 + 0.613607i \(0.210282\pi\)
−0.789611 + 0.613607i \(0.789718\pi\)
\(350\) 0 0
\(351\) 44.0832i 2.35299i
\(352\) −10.5900 + 19.8383i −0.564448 + 1.05739i
\(353\) −28.9021 + 7.74430i −1.53830 + 0.412188i −0.925718 0.378215i \(-0.876538\pi\)
−0.612587 + 0.790403i \(0.709871\pi\)
\(354\) 37.1033 2.19214i 1.97202 0.116511i
\(355\) −7.34358 + 2.52800i −0.389757 + 0.134172i
\(356\) 7.43261 17.3102i 0.393928 0.917441i
\(357\) 0 0
\(358\) −5.81164 + 28.2651i −0.307155 + 1.49385i
\(359\) −4.27518 7.40483i −0.225635 0.390812i 0.730875 0.682512i \(-0.239112\pi\)
−0.956510 + 0.291700i \(0.905779\pi\)
\(360\) 42.4295 10.6886i 2.23623 0.563341i
\(361\) 8.63374 14.9541i 0.454407 0.787057i
\(362\) −17.6746 + 5.87311i −0.928954 + 0.308684i
\(363\) 10.6967 10.6967i 0.561429 0.561429i
\(364\) 0 0
\(365\) 3.01871 + 4.47613i 0.158007 + 0.234291i
\(366\) −2.68841 + 5.36423i −0.140525 + 0.280393i
\(367\) −5.06713 + 1.35773i −0.264502 + 0.0708731i −0.388633 0.921393i \(-0.627052\pi\)
0.124131 + 0.992266i \(0.460386\pi\)
\(368\) 10.8560 17.7326i 0.565908 0.924378i
\(369\) −67.8106 + 39.1505i −3.53008 + 2.03809i
\(370\) −9.09176 22.0834i −0.472658 1.14806i
\(371\) 0 0
\(372\) −6.01360 15.0637i −0.311791 0.781017i
\(373\) −0.799311 + 2.98307i −0.0413867 + 0.154457i −0.983527 0.180762i \(-0.942144\pi\)
0.942140 + 0.335219i \(0.108810\pi\)
\(374\) 0.355410 + 6.01554i 0.0183778 + 0.311056i
\(375\) −10.8880 + 33.4849i −0.562254 + 1.72915i
\(376\) 12.4669 + 14.7821i 0.642932 + 0.762327i
\(377\) 11.3909 11.3909i 0.586661 0.586661i
\(378\) 0 0
\(379\) −17.0070 −0.873589 −0.436794 0.899561i \(-0.643886\pi\)
−0.436794 + 0.899561i \(0.643886\pi\)
\(380\) −0.435391 + 5.87033i −0.0223351 + 0.301142i
\(381\) 23.1056 40.0201i 1.18374 2.05029i
\(382\) −11.3683 + 12.7960i −0.581655 + 0.654701i
\(383\) 26.3270 + 7.05430i 1.34525 + 0.360458i 0.858379 0.513017i \(-0.171472\pi\)
0.486869 + 0.873475i \(0.338139\pi\)
\(384\) 21.1096 28.7041i 1.07724 1.46480i
\(385\) 0 0
\(386\) 0.829130 0.546320i 0.0422016 0.0278070i
\(387\) −4.49355 + 16.7702i −0.228420 + 0.852475i
\(388\) −3.66516 + 25.3169i −0.186070 + 1.28527i
\(389\) 10.9526 + 6.32350i 0.555320 + 0.320614i 0.751265 0.660001i \(-0.229444\pi\)
−0.195945 + 0.980615i \(0.562777\pi\)
\(390\) 35.2831 4.56810i 1.78663 0.231315i
\(391\) 5.57153i 0.281764i
\(392\) 0 0
\(393\) 21.9573 + 21.9573i 1.10760 + 1.10760i
\(394\) 1.04776 2.09062i 0.0527856 0.105324i
\(395\) 5.06361 5.82416i 0.254778 0.293045i
\(396\) −44.0659 + 32.9205i −2.21440 + 1.65432i
\(397\) −11.7173 3.13965i −0.588076 0.157574i −0.0475022 0.998871i \(-0.515126\pi\)
−0.540574 + 0.841297i \(0.681793\pi\)
\(398\) 4.97053 24.1743i 0.249150 1.21175i
\(399\) 0 0
\(400\) 7.33539 + 18.6062i 0.366769 + 0.930312i
\(401\) 7.12839 + 12.3467i 0.355975 + 0.616566i 0.987284 0.158965i \(-0.0508156\pi\)
−0.631310 + 0.775531i \(0.717482\pi\)
\(402\) 18.3623 + 16.3136i 0.915829 + 0.813648i
\(403\) −2.38094 8.88580i −0.118603 0.442633i
\(404\) 2.41932 + 20.4028i 0.120366 + 1.01508i
\(405\) 39.7459 + 7.72884i 1.97499 + 0.384049i
\(406\) 0 0
\(407\) 21.2288 + 21.2288i 1.05227 + 1.05227i
\(408\) 0.808298 9.51357i 0.0400167 0.470992i
\(409\) 25.8941 + 14.9499i 1.28038 + 0.739227i 0.976918 0.213617i \(-0.0685243\pi\)
0.303461 + 0.952844i \(0.401858\pi\)
\(410\) −21.7269 28.4412i −1.07302 1.40461i
\(411\) 44.0282 25.4197i 2.17175 1.25386i
\(412\) −7.76394 + 3.09945i −0.382502 + 0.152699i
\(413\) 0 0
\(414\) 42.4666 27.9816i 2.08712 1.37522i
\(415\) 23.8100 + 11.6151i 1.16879 + 0.570161i
\(416\) 13.8063 14.7569i 0.676912 0.723518i
\(417\) 7.42253 + 27.7013i 0.363483 + 1.35654i
\(418\) −2.33348 7.02239i −0.114134 0.343477i
\(419\) 37.6505 1.83935 0.919674 0.392684i \(-0.128453\pi\)
0.919674 + 0.392684i \(0.128453\pi\)
\(420\) 0 0
\(421\) −8.37171 −0.408012 −0.204006 0.978970i \(-0.565396\pi\)
−0.204006 + 0.978970i \(0.565396\pi\)
\(422\) −2.82068 8.48857i −0.137309 0.413217i
\(423\) 12.2419 + 45.6872i 0.595219 + 2.22139i
\(424\) 8.04090 22.2657i 0.390500 1.08132i
\(425\) 4.27969 + 3.22596i 0.207596 + 0.156482i
\(426\) −12.9174 + 8.51141i −0.625852 + 0.412379i
\(427\) 0 0
\(428\) −11.7981 29.5536i −0.570285 1.42853i
\(429\) −38.7331 + 22.3626i −1.87005 + 1.07967i
\(430\) −7.86574 1.05272i −0.379320 0.0507668i
\(431\) 4.31232 + 2.48972i 0.207717 + 0.119925i 0.600250 0.799812i \(-0.295068\pi\)
−0.392533 + 0.919738i \(0.628401\pi\)
\(432\) 43.3682 23.5714i 2.08655 1.13408i
\(433\) −2.70541 2.70541i −0.130014 0.130014i 0.639106 0.769119i \(-0.279305\pi\)
−0.769119 + 0.639106i \(0.779305\pi\)
\(434\) 0 0
\(435\) 17.7555 + 26.3277i 0.851310 + 1.26232i
\(436\) 5.92943 0.703100i 0.283968 0.0336724i
\(437\) 1.77079 + 6.60868i 0.0847084 + 0.316136i
\(438\) 8.03921 + 7.14226i 0.384128 + 0.341270i
\(439\) −18.7676 32.5065i −0.895731 1.55145i −0.832898 0.553427i \(-0.813320\pi\)
−0.0628330 0.998024i \(-0.520014\pi\)
\(440\) −17.5093 18.0433i −0.834722 0.860179i
\(441\) 0 0
\(442\) 1.09062 5.30425i 0.0518754 0.252297i
\(443\) 12.2588 + 3.28474i 0.582433 + 0.156063i 0.537993 0.842950i \(-0.319183\pi\)
0.0444406 + 0.999012i \(0.485849\pi\)
\(444\) −28.4693 38.1078i −1.35109 1.80851i
\(445\) 15.8947 + 13.8191i 0.753482 + 0.655089i
\(446\) −1.01644 + 2.02813i −0.0481300 + 0.0960347i
\(447\) 4.39643 + 4.39643i 0.207944 + 0.207944i
\(448\) 0 0
\(449\) 25.1638i 1.18755i 0.804630 + 0.593777i \(0.202364\pi\)
−0.804630 + 0.593777i \(0.797636\pi\)
\(450\) −3.09483 + 48.8217i −0.145892 + 2.30148i
\(451\) 38.9649 + 22.4964i 1.83479 + 1.05931i
\(452\) −1.14015 0.165062i −0.0536283 0.00776384i
\(453\) 7.03434 26.2525i 0.330502 1.23345i
\(454\) 5.91729 3.89895i 0.277712 0.182987i
\(455\) 0 0
\(456\) 2.06492 + 11.5414i 0.0966987 + 0.540478i
\(457\) −26.2723 7.03963i −1.22896 0.329300i −0.414788 0.909918i \(-0.636144\pi\)
−0.814176 + 0.580618i \(0.802811\pi\)
\(458\) −9.69192 + 10.9091i −0.452874 + 0.509747i
\(459\) 6.61343 11.4548i 0.308689 0.534664i
\(460\) 15.1766 + 17.6081i 0.707611 + 0.820983i
\(461\) 20.0052 0.931737 0.465868 0.884854i \(-0.345742\pi\)
0.465868 + 0.884854i \(0.345742\pi\)
\(462\) 0 0
\(463\) −10.1515 + 10.1515i −0.471781 + 0.471781i −0.902491 0.430710i \(-0.858263\pi\)
0.430710 + 0.902491i \(0.358263\pi\)
\(464\) 17.2969 + 5.11540i 0.802987 + 0.237476i
\(465\) 18.0901 1.26366i 0.838908 0.0586006i
\(466\) −1.06554 18.0350i −0.0493604 0.835455i
\(467\) 1.07000 3.99329i 0.0495137 0.184787i −0.936740 0.350026i \(-0.886173\pi\)
0.986254 + 0.165239i \(0.0528394\pi\)
\(468\) 45.9067 18.3265i 2.12204 0.847141i
\(469\) 0 0
\(470\) −19.9918 + 8.23066i −0.922154 + 0.379652i
\(471\) −43.2390 + 24.9640i −1.99235 + 1.15028i
\(472\) 10.0290 + 21.3672i 0.461621 + 0.983504i
\(473\) 9.63636 2.58206i 0.443080 0.118723i
\(474\) 6.88744 13.7426i 0.316351 0.631221i
\(475\) −6.10167 2.46627i −0.279964 0.113160i
\(476\) 0 0
\(477\) 40.9445 40.9445i 1.87472 1.87472i
\(478\) −25.6677 + 8.52915i −1.17401 + 0.390114i
\(479\) −4.66449 + 8.07913i −0.213126 + 0.369145i −0.952691 0.303940i \(-0.901698\pi\)
0.739565 + 0.673085i \(0.235031\pi\)
\(480\) 23.3600 + 32.2682i 1.06623 + 1.47284i
\(481\) −13.4894 23.3644i −0.615065 1.06532i
\(482\) −4.03256 + 19.6125i −0.183678 + 0.893324i
\(483\) 0 0
\(484\) 8.82738 + 3.79027i 0.401245 + 0.172285i
\(485\) −25.7048 12.5394i −1.16719 0.569384i
\(486\) 28.2459 1.66883i 1.28126 0.0756995i
\(487\) 28.0071 7.50448i 1.26912 0.340061i 0.439429 0.898278i \(-0.355181\pi\)
0.829695 + 0.558217i \(0.188514\pi\)
\(488\) −3.79678 0.322585i −0.171872 0.0146027i
\(489\) 21.9378i 0.992060i
\(490\) 0 0
\(491\) 28.1818i 1.27183i −0.771760 0.635914i \(-0.780623\pi\)
0.771760 0.635914i \(-0.219377\pi\)
\(492\) −55.9933 44.1218i −2.52437 1.98917i
\(493\) 4.66874 1.25099i 0.210270 0.0563416i
\(494\) 0.392203 + 6.63828i 0.0176460 + 0.298670i
\(495\) −20.0174 58.1486i −0.899716 2.61359i
\(496\) 7.46858 7.09358i 0.335349 0.318511i
\(497\) 0 0
\(498\) 51.6859 + 10.6272i 2.31610 + 0.476218i
\(499\) −15.5368 26.9104i −0.695521 1.20468i −0.970005 0.243085i \(-0.921840\pi\)
0.274484 0.961592i \(-0.411493\pi\)
\(500\) −22.3128 + 1.46241i −0.997859 + 0.0654011i
\(501\) 26.5463 45.9796i 1.18600 2.05422i
\(502\) −3.88387 11.6881i −0.173346 0.521667i
\(503\) −28.6110 + 28.6110i −1.27570 + 1.27570i −0.332654 + 0.943049i \(0.607944\pi\)
−0.943049 + 0.332654i \(0.892056\pi\)
\(504\) 0 0
\(505\) −22.5485 4.38469i −1.00340 0.195116i
\(506\) −26.1254 13.0933i −1.16142 0.582070i
\(507\) −0.724197 + 0.194048i −0.0321627 + 0.00861798i
\(508\) 29.0439 + 4.20473i 1.28861 + 0.186555i
\(509\) 10.6109 6.12618i 0.470318 0.271538i −0.246055 0.969256i \(-0.579134\pi\)
0.716373 + 0.697718i \(0.245801\pi\)
\(510\) 9.85345 + 4.10623i 0.436318 + 0.181827i
\(511\) 0 0
\(512\) 21.8998 + 5.69184i 0.967845 + 0.251546i
\(513\) −4.20388 + 15.6891i −0.185606 + 0.692690i
\(514\) 8.42782 0.497933i 0.371735 0.0219629i
\(515\) −0.651297 9.32376i −0.0286996 0.410854i
\(516\) −15.6968 + 1.86129i −0.691013 + 0.0819389i
\(517\) 19.2182 19.2182i 0.845214 0.845214i
\(518\) 0 0
\(519\) 0.697297 0.0306080
\(520\) 11.0017 + 19.7342i 0.482458 + 0.865403i
\(521\) −17.7836 + 30.8021i −0.779115 + 1.34947i 0.153338 + 0.988174i \(0.450998\pi\)
−0.932453 + 0.361292i \(0.882336\pi\)
\(522\) 32.9827 + 29.3028i 1.44361 + 1.28255i
\(523\) −11.0942 2.97269i −0.485118 0.129987i 0.00796695 0.999968i \(-0.497464\pi\)
−0.493085 + 0.869981i \(0.664131\pi\)
\(524\) −7.78040 + 18.1202i −0.339889 + 0.791586i
\(525\) 0 0
\(526\) −12.2970 18.6627i −0.536175 0.813733i
\(527\) 0.714386 2.66612i 0.0311191 0.116138i
\(528\) −42.7105 26.1475i −1.85873 1.13792i
\(529\) 3.48031 + 2.00936i 0.151318 + 0.0873633i
\(530\) 20.9634 + 16.1574i 0.910591 + 0.701831i
\(531\) 57.7344i 2.50546i
\(532\) 0 0
\(533\) −28.5898 28.5898i −1.23836 1.23836i
\(534\) 37.5051 + 18.7965i 1.62300 + 0.813405i
\(535\) 35.4911 2.47918i 1.53441 0.107184i
\(536\) −5.29821 + 14.6711i −0.228848 + 0.633694i
\(537\) −62.0710 16.6319i −2.67856 0.717718i
\(538\) 11.0762 + 2.27741i 0.477530 + 0.0981860i
\(539\) 0 0
\(540\) 10.3014 + 54.2162i 0.443300 + 2.33309i
\(541\) −6.42555 11.1294i −0.276256 0.478489i 0.694195 0.719787i \(-0.255760\pi\)
−0.970451 + 0.241297i \(0.922427\pi\)
\(542\) 28.2339 31.7796i 1.21275 1.36505i
\(543\) −10.7347 40.0626i −0.460672 1.71925i
\(544\) 5.80136 1.76326i 0.248731 0.0755993i
\(545\) −1.27427 + 6.55300i −0.0545838 + 0.280700i
\(546\) 0 0
\(547\) −1.19674 1.19674i −0.0511688 0.0511688i 0.681059 0.732228i \(-0.261520\pi\)
−0.732228 + 0.681059i \(0.761520\pi\)
\(548\) 25.3589 + 19.9824i 1.08328 + 0.853608i
\(549\) −8.07165 4.66017i −0.344490 0.198891i
\(550\) 25.1843 12.4867i 1.07386 0.532436i
\(551\) −5.14025 + 2.96772i −0.218982 + 0.126429i
\(552\) 37.9945 + 26.4623i 1.61715 + 1.12631i
\(553\) 0 0
\(554\) 1.92289 + 2.91829i 0.0816956 + 0.123986i
\(555\) 50.2863 17.3109i 2.13454 0.734805i
\(556\) −14.5904 + 10.9001i −0.618771 + 0.462267i
\(557\) −4.30105 16.0517i −0.182241 0.680133i −0.995204 0.0978181i \(-0.968814\pi\)
0.812963 0.582315i \(-0.197853\pi\)
\(558\) 23.9092 7.94483i 1.01216 0.336332i
\(559\) −8.96505 −0.379181
\(560\) 0 0
\(561\) −13.4195 −0.566570
\(562\) 3.82634 1.27146i 0.161404 0.0536334i
\(563\) −9.63625 35.9630i −0.406119 1.51566i −0.801982 0.597349i \(-0.796221\pi\)
0.395862 0.918310i \(-0.370446\pi\)
\(564\) −34.4985 + 25.7729i −1.45265 + 1.08524i
\(565\) 0.564715 1.15762i 0.0237577 0.0487015i
\(566\) −6.73263 10.2179i −0.282993 0.429488i
\(567\) 0 0
\(568\) −8.06143 5.61460i −0.338250 0.235583i
\(569\) −14.2519 + 8.22834i −0.597471 + 0.344950i −0.768046 0.640395i \(-0.778771\pi\)
0.170575 + 0.985345i \(0.445437\pi\)
\(570\) −12.9928 1.73891i −0.544208 0.0728348i
\(571\) −38.7542 22.3748i −1.62181 0.936355i −0.986434 0.164156i \(-0.947510\pi\)
−0.635380 0.772199i \(-0.719157\pi\)
\(572\) −22.3091 17.5792i −0.932791 0.735025i
\(573\) −26.9529 26.9529i −1.12597 1.12597i
\(574\) 0 0
\(575\) −23.9252 + 10.1515i −0.997749 + 0.423347i
\(576\) 42.5756 + 35.3629i 1.77398 + 1.47345i
\(577\) −3.54445 13.2280i −0.147557 0.550691i −0.999628 0.0272648i \(-0.991320\pi\)
0.852071 0.523426i \(-0.175346\pi\)
\(578\) −14.8886 + 16.7584i −0.619285 + 0.697057i
\(579\) 1.10559 + 1.91494i 0.0459468 + 0.0795822i
\(580\) −11.3474 + 16.6710i −0.471174 + 0.692226i
\(581\) 0 0
\(582\) −55.7990 11.4729i −2.31294 0.475569i
\(583\) −32.1388 8.61157i −1.33105 0.356655i
\(584\) −2.31961 + 6.42314i −0.0959862 + 0.265792i
\(585\) 3.85099 + 55.1296i 0.159219 + 2.27933i
\(586\) −29.5499 14.8096i −1.22069 0.611779i
\(587\) −24.5126 24.5126i −1.01175 1.01175i −0.999930 0.0118150i \(-0.996239\pi\)
−0.0118150 0.999930i \(-0.503761\pi\)
\(588\) 0 0
\(589\) 3.38948i 0.139661i
\(590\) −26.1713 + 3.38840i −1.07746 + 0.139498i
\(591\) 4.50992 + 2.60380i 0.185513 + 0.107106i
\(592\) 15.7726 25.7636i 0.648249 1.05888i
\(593\) −11.8464 + 44.2116i −0.486475 + 1.81555i 0.0868479 + 0.996222i \(0.472321\pi\)
−0.573323 + 0.819329i \(0.694346\pi\)
\(594\) −38.1708 57.9303i −1.56617 2.37691i
\(595\) 0 0
\(596\) −1.55784 + 3.62814i −0.0638115 + 0.148614i
\(597\) 53.0875 + 14.2248i 2.17273 + 0.582180i
\(598\) 19.6320 + 17.4416i 0.802810 + 0.713239i
\(599\) 15.6035 27.0260i 0.637540 1.10425i −0.348430 0.937335i \(-0.613285\pi\)
0.985971 0.166918i \(-0.0533815\pi\)
\(600\) −42.3258 + 13.8631i −1.72794 + 0.565957i
\(601\) −3.84939 −0.157020 −0.0785099 0.996913i \(-0.525016\pi\)
−0.0785099 + 0.996913i \(0.525016\pi\)
\(602\) 0 0
\(603\) −26.9786 + 26.9786i −1.09866 + 1.09866i
\(604\) 17.1398 2.03241i 0.697410 0.0826974i
\(605\) −7.04708 + 8.10554i −0.286504 + 0.329537i
\(606\) −45.6740 + 2.69851i −1.85538 + 0.109620i
\(607\) 1.49094 5.56425i 0.0605152 0.225846i −0.929045 0.369967i \(-0.879369\pi\)
0.989560 + 0.144121i \(0.0460356\pi\)
\(608\) −6.32089 + 3.93534i −0.256346 + 0.159599i
\(609\) 0 0
\(610\) 1.63876 3.93243i 0.0663515 0.159219i
\(611\) −21.1515 + 12.2118i −0.855698 + 0.494038i
\(612\) 14.6780 + 2.12495i 0.593322 + 0.0858961i
\(613\) −19.6676 + 5.26991i −0.794366 + 0.212850i −0.633109 0.774063i \(-0.718222\pi\)
−0.161257 + 0.986912i \(0.551555\pi\)
\(614\) 26.8666 + 13.4648i 1.08425 + 0.543395i
\(615\) 66.0796 44.5642i 2.66459 1.79700i
\(616\) 0 0
\(617\) −5.54965 + 5.54965i −0.223420 + 0.223420i −0.809937 0.586517i \(-0.800499\pi\)
0.586517 + 0.809937i \(0.300499\pi\)
\(618\) −5.87047 17.6666i −0.236145 0.710655i
\(619\) −2.52112 + 4.36671i −0.101332 + 0.175513i −0.912234 0.409670i \(-0.865644\pi\)
0.810901 + 0.585183i \(0.198977\pi\)
\(620\) 5.00466 + 10.3719i 0.200992 + 0.416546i
\(621\) 32.0714 + 55.5492i 1.28698 + 2.22911i
\(622\) 39.0264 + 8.02430i 1.56482 + 0.321745i
\(623\) 0 0
\(624\) 30.9919 + 32.6302i 1.24067 + 1.30625i
\(625\) 6.05513 24.2556i 0.242205 0.970225i
\(626\) −2.14098 36.2374i −0.0855707 1.44834i
\(627\) 15.9175 4.26509i 0.635685 0.170331i
\(628\) −24.9044 19.6243i −0.993793 0.783094i
\(629\) 8.09482i 0.322762i
\(630\) 0 0
\(631\) 22.4036i 0.891874i 0.895064 + 0.445937i \(0.147130\pi\)
−0.895064 + 0.445937i \(0.852870\pi\)
\(632\) 9.72700 + 0.826432i 0.386919 + 0.0328737i
\(633\) 19.2409 5.15558i 0.764756 0.204916i
\(634\) −37.1323 + 2.19385i −1.47471 + 0.0871289i
\(635\) −14.3854 + 29.4889i −0.570866 + 1.17023i
\(636\) 48.4414 + 20.7996i 1.92083 + 0.824759i
\(637\) 0 0
\(638\) 5.10577 24.8321i 0.202139 0.983111i
\(639\) −12.0146 20.8100i −0.475292 0.823230i
\(640\) −13.5315 + 21.3752i −0.534878 + 0.844929i
\(641\) 21.5598 37.3426i 0.851559 1.47494i −0.0282413 0.999601i \(-0.508991\pi\)
0.879801 0.475343i \(-0.157676\pi\)
\(642\) 67.2484 22.3461i 2.65408 0.881930i
\(643\) −1.10922 + 1.10922i −0.0437432 + 0.0437432i −0.728640 0.684897i \(-0.759847\pi\)
0.684897 + 0.728640i \(0.259847\pi\)
\(644\) 0 0
\(645\) 3.37334 17.3476i 0.132825 0.683060i
\(646\) −0.893973 + 1.78376i −0.0351729 + 0.0701811i
\(647\) −32.5679 + 8.72654i −1.28038 + 0.343076i −0.833997 0.551769i \(-0.813953\pi\)
−0.446378 + 0.894844i \(0.647286\pi\)
\(648\) 21.7615 + 46.3638i 0.854871 + 1.82134i
\(649\) 28.7304 16.5875i 1.12777 0.651116i
\(650\) −24.7646 + 4.98120i −0.971347 + 0.195379i
\(651\) 0 0
\(652\) −12.9388 + 5.16530i −0.506721 + 0.202289i
\(653\) 9.95952 37.1694i 0.389746 1.45455i −0.440801 0.897605i \(-0.645306\pi\)
0.830547 0.556948i \(-0.188028\pi\)
\(654\) 0.784236 + 13.2737i 0.0306661 + 0.519042i
\(655\) −16.6385 14.4657i −0.650119 0.565223i
\(656\) 12.8391 43.4131i 0.501281 1.69500i
\(657\) −11.8115 + 11.8115i −0.460811 + 0.460811i
\(658\) 0 0
\(659\) 12.4757 0.485985 0.242993 0.970028i \(-0.421871\pi\)
0.242993 + 0.970028i \(0.421871\pi\)
\(660\) 42.4106 36.5539i 1.65083 1.42286i
\(661\) −3.31297 + 5.73823i −0.128859 + 0.223191i −0.923235 0.384236i \(-0.874465\pi\)
0.794376 + 0.607427i \(0.207798\pi\)
\(662\) −16.1577 + 18.1868i −0.627986 + 0.706851i
\(663\) 11.6483 + 3.12115i 0.452382 + 0.121215i
\(664\) 5.90168 + 32.9862i 0.229030 + 1.28011i
\(665\) 0 0
\(666\) 61.6993 40.6542i 2.39080 1.57532i
\(667\) −6.06657 + 22.6407i −0.234898 + 0.876653i
\(668\) 33.3689 + 4.83086i 1.29108 + 0.186912i
\(669\) −4.37511 2.52597i −0.169151 0.0976596i
\(670\) −13.8129 10.6462i −0.533640 0.411299i
\(671\) 5.35559i 0.206750i
\(672\) 0 0
\(673\) −27.7823 27.7823i −1.07093 1.07093i −0.997285 0.0736433i \(-0.976537\pi\)
−0.0736433 0.997285i \(-0.523463\pi\)
\(674\) 11.5631 23.0721i 0.445395 0.888706i
\(675\) −61.2390 7.52828i −2.35709 0.289764i
\(676\) −0.284962 0.381438i −0.0109601 0.0146707i
\(677\) 17.0379 + 4.56530i 0.654821 + 0.175459i 0.570908 0.821014i \(-0.306591\pi\)
0.0839136 + 0.996473i \(0.473258\pi\)
\(678\) 0.516687 2.51292i 0.0198433 0.0965082i
\(679\) 0 0
\(680\) −0.101812 + 6.77833i −0.00390429 + 0.259937i
\(681\) 7.89032 + 13.6664i 0.302358 + 0.523699i
\(682\) −10.8229 9.61533i −0.414429 0.368190i
\(683\) −1.40860 5.25698i −0.0538987 0.201153i 0.933726 0.357989i \(-0.116537\pi\)
−0.987625 + 0.156836i \(0.949871\pi\)
\(684\) −18.0857 + 2.14457i −0.691524 + 0.0819996i
\(685\) −29.9269 + 20.1828i −1.14345 + 0.771145i
\(686\) 0 0
\(687\) −22.9783 22.9783i −0.876677 0.876677i
\(688\) −4.79363 8.81964i −0.182756 0.336246i
\(689\) 25.8941 + 14.9499i 0.986485 + 0.569547i
\(690\) −41.1368 + 31.4254i −1.56605 + 1.19634i
\(691\) 32.0466 18.5021i 1.21911 0.703854i 0.254384 0.967103i \(-0.418127\pi\)
0.964728 + 0.263249i \(0.0847941\pi\)
\(692\) 0.164180 + 0.411262i 0.00624120 + 0.0156338i
\(693\) 0 0
\(694\) 22.3016 14.6947i 0.846559 0.557805i
\(695\) −6.62785 19.2532i −0.251409 0.730317i
\(696\) −13.6435 + 37.7797i −0.517156 + 1.43204i
\(697\) −3.13983 11.7180i −0.118930 0.443851i
\(698\) −10.2241 30.7684i −0.386987 1.16460i
\(699\) 40.2324 1.52173
\(700\) 0 0
\(701\) −29.4765 −1.11331 −0.556656 0.830743i \(-0.687916\pi\)
−0.556656 + 0.830743i \(0.687916\pi\)
\(702\) 19.6591 + 59.1623i 0.741987 + 2.23294i
\(703\) 2.57277 + 9.60170i 0.0970338 + 0.362135i
\(704\) 5.36536 31.3469i 0.202215 1.18143i
\(705\) −15.6713 45.5236i −0.590216 1.71452i
\(706\) 35.3348 23.2824i 1.32984 0.876244i
\(707\) 0 0
\(708\) −48.8172 + 19.4884i −1.83466 + 0.732419i
\(709\) 15.6918 9.05966i 0.589318 0.340243i −0.175510 0.984478i \(-0.556157\pi\)
0.764828 + 0.644235i \(0.222824\pi\)
\(710\) 8.72815 6.66763i 0.327562 0.250232i
\(711\) 20.6788 + 11.9389i 0.775515 + 0.447744i
\(712\) −2.25542 + 26.5460i −0.0845254 + 0.994853i
\(713\) 9.46481 + 9.46481i 0.354460 + 0.354460i
\(714\) 0 0
\(715\) 26.3277 17.7555i 0.984602 0.664017i
\(716\) −4.80539 40.5251i −0.179586 1.51450i
\(717\) −15.5894 58.1804i −0.582197 2.17279i
\(718\) 9.03977 + 8.03118i 0.337361 + 0.299721i
\(719\) 4.66449 + 8.07913i 0.173956 + 0.301301i 0.939799 0.341726i \(-0.111012\pi\)
−0.765843 + 0.643027i \(0.777678\pi\)
\(720\) −52.1763 + 33.2664i −1.94449 + 1.23977i
\(721\) 0 0
\(722\) −4.91814 + 23.9195i −0.183034 + 0.890193i
\(723\) −43.0696 11.5405i −1.60178 0.429195i
\(724\) 21.1012 15.7641i 0.784218 0.585869i
\(725\) −13.8786 17.7691i −0.515438 0.659929i
\(726\) −9.58532 + 19.1258i −0.355745 + 0.709824i
\(727\) −11.9373 11.9373i −0.442729 0.442729i 0.450199 0.892928i \(-0.351353\pi\)
−0.892928 + 0.450199i \(0.851353\pi\)
\(728\) 0 0
\(729\) 8.68729i 0.321751i
\(730\) −6.04744 4.66102i −0.223826 0.172512i
\(731\) −2.32952 1.34495i −0.0861605 0.0497448i
\(732\) 1.21579 8.39802i 0.0449370 0.310400i
\(733\) −11.7409 + 43.8178i −0.433662 + 1.61845i 0.310587 + 0.950545i \(0.399474\pi\)
−0.744249 + 0.667903i \(0.767192\pi\)
\(734\) 6.19490 4.08187i 0.228658 0.150665i
\(735\) 0 0
\(736\) −6.66142 + 28.6396i −0.245543 + 1.05567i
\(737\) 21.1765 + 5.67423i 0.780047 + 0.209013i
\(738\) 73.5465 82.7828i 2.70728 3.04728i
\(739\) −11.9877 + 20.7633i −0.440975 + 0.763792i −0.997762 0.0668636i \(-0.978701\pi\)
0.556787 + 0.830656i \(0.312034\pi\)
\(740\) 22.0499 + 25.5827i 0.810570 + 0.940439i
\(741\) −14.8087 −0.544009
\(742\) 0 0
\(743\) −26.3785 + 26.3785i −0.967733 + 0.967733i −0.999495 0.0317628i \(-0.989888\pi\)
0.0317628 + 0.999495i \(0.489888\pi\)
\(744\) 14.7884 + 17.5346i 0.542167 + 0.642850i
\(745\) −3.33145 2.89642i −0.122055 0.106116i
\(746\) −0.257592 4.35991i −0.00943113 0.159628i
\(747\) −21.2141 + 79.1721i −0.776184 + 2.89676i
\(748\) −3.15964 7.91472i −0.115528 0.289391i
\(749\) 0 0
\(750\) −0.320402 49.7943i −0.0116994 1.81823i
\(751\) 45.3197 26.1653i 1.65374 0.954786i 0.678223 0.734857i \(-0.262751\pi\)
0.975516 0.219930i \(-0.0705828\pi\)
\(752\) −23.3235 14.2787i −0.850520 0.520692i
\(753\) 26.4933 7.09885i 0.965468 0.258696i
\(754\) −10.2074 + 20.3671i −0.371733 + 0.741726i
\(755\) −3.68346 + 18.9424i −0.134055 + 0.689383i
\(756\) 0 0
\(757\) 23.8139 23.8139i 0.865530 0.865530i −0.126444 0.991974i \(-0.540356\pi\)
0.991974 + 0.126444i \(0.0403563\pi\)
\(758\) 22.8243 7.58434i 0.829018 0.275476i
\(759\) 32.5383 56.3581i 1.18107 2.04567i
\(760\) −2.03358 8.07250i −0.0737659 0.292820i
\(761\) −9.43544 16.3427i −0.342034 0.592421i 0.642776 0.766054i \(-0.277783\pi\)
−0.984810 + 0.173633i \(0.944449\pi\)
\(762\) −13.1619 + 64.0134i −0.476807 + 2.31896i
\(763\) 0 0
\(764\) 9.55054 22.2428i 0.345526 0.804716i
\(765\) −7.26997 + 14.9029i −0.262846 + 0.538815i
\(766\) −38.4783 + 2.27338i −1.39028 + 0.0821405i
\(767\) −28.7964 + 7.71597i −1.03978 + 0.278607i
\(768\) −15.5295 + 47.9366i −0.560374 + 1.72976i
\(769\) 12.2463i 0.441614i −0.975318 0.220807i \(-0.929131\pi\)
0.975318 0.220807i \(-0.0708691\pi\)
\(770\) 0 0
\(771\) 18.8008i 0.677093i
\(772\) −0.869107 + 1.10295i −0.0312798 + 0.0396960i
\(773\) −4.15790 + 1.11411i −0.149549 + 0.0400716i −0.332817 0.942991i \(-0.607999\pi\)
0.183268 + 0.983063i \(0.441332\pi\)
\(774\) −1.44813 24.5105i −0.0520519 0.881011i
\(775\) −12.7505 + 1.79006i −0.458011 + 0.0643010i
\(776\) −6.37133 35.6113i −0.228718 1.27837i
\(777\) 0 0
\(778\) −17.5191 3.60213i −0.628089 0.129143i
\(779\) 7.44864 + 12.9014i 0.266875 + 0.462242i
\(780\) −45.3149 + 21.8654i −1.62253 + 0.782905i
\(781\) −6.90378 + 11.9577i −0.247037 + 0.427880i
\(782\) 2.48465 + 7.47732i 0.0888509 + 0.267388i
\(783\) −39.3473 + 39.3473i −1.40616 + 1.40616i
\(784\) 0 0
\(785\) 29.3905 19.8210i 1.04899 0.707443i
\(786\) −39.2601 19.6761i −1.40036 0.701822i
\(787\) −4.08160 + 1.09366i −0.145493 + 0.0389848i −0.330831 0.943690i \(-0.607329\pi\)
0.185337 + 0.982675i \(0.440662\pi\)
\(788\) −0.473836 + 3.27300i −0.0168797 + 0.116596i
\(789\) 43.1030 24.8855i 1.53451 0.885948i
\(790\) −4.19835 + 10.0745i −0.149371 + 0.358435i
\(791\) 0 0
\(792\) 44.4581 63.8327i 1.57975 2.26820i
\(793\) 1.24563 4.64874i 0.0442334 0.165081i
\(794\) 17.1255 1.01181i 0.607761 0.0359078i
\(795\) −38.6718 + 44.4802i −1.37155 + 1.57755i
\(796\) 4.10991 + 34.6600i 0.145672 + 1.22849i
\(797\) 35.3989 35.3989i 1.25389 1.25389i 0.299933 0.953960i \(-0.403036\pi\)
0.953960 0.299933i \(-0.0969644\pi\)
\(798\) 0 0
\(799\) −7.32815 −0.259251
\(800\) −18.1421 21.6994i −0.641419 0.767191i
\(801\) −32.5825 + 56.4346i −1.15125 + 1.99402i
\(802\) −15.0728 13.3911i −0.532239 0.472856i
\(803\) 9.27129 + 2.48424i 0.327177 + 0.0876668i
\(804\) −31.9185 13.7050i −1.12568 0.483340i
\(805\) 0 0
\(806\) 7.15804 + 10.8635i 0.252131 + 0.382650i
\(807\) −6.51753 + 24.3238i −0.229428 + 0.856237i
\(808\) −12.3456 26.3029i −0.434318 0.925333i
\(809\) −25.0379 14.4556i −0.880284 0.508232i −0.00953207 0.999955i \(-0.503034\pi\)
−0.870752 + 0.491722i \(0.836368\pi\)
\(810\) −56.7881 + 7.35235i −1.99533 + 0.258335i
\(811\) 23.9566i 0.841229i 0.907240 + 0.420614i \(0.138185\pi\)
−0.907240 + 0.420614i \(0.861815\pi\)
\(812\) 0 0
\(813\) 66.9390 + 66.9390i 2.34765 + 2.34765i
\(814\) −37.9574 19.0232i −1.33041 0.666763i
\(815\) −1.08540 15.5382i −0.0380199 0.544281i
\(816\) 3.15784 + 13.1282i 0.110547 + 0.459580i
\(817\) 3.19064 + 0.854928i 0.111626 + 0.0299102i
\(818\) −41.4184 8.51612i −1.44816 0.297759i
\(819\) 0 0
\(820\) 41.8423 + 28.4806i 1.46120 + 0.994586i
\(821\) −17.8387 30.8975i −0.622574 1.07833i −0.989005 0.147885i \(-0.952754\pi\)
0.366430 0.930445i \(-0.380580\pi\)
\(822\) −47.7524 + 53.7493i −1.66556 + 1.87472i
\(823\) 3.41164 + 12.7324i 0.118922 + 0.443824i 0.999550 0.0299839i \(-0.00954561\pi\)
−0.880628 + 0.473808i \(0.842879\pi\)
\(824\) 9.03745 7.62202i 0.314835 0.265526i
\(825\) 24.4507 + 57.6257i 0.851265 + 2.00627i
\(826\) 0 0
\(827\) 6.42266 + 6.42266i 0.223338 + 0.223338i 0.809902 0.586565i \(-0.199520\pi\)
−0.586565 + 0.809902i \(0.699520\pi\)
\(828\) −44.5141 + 56.4911i −1.54697 + 1.96320i
\(829\) −16.2271 9.36870i −0.563589 0.325388i 0.190996 0.981591i \(-0.438828\pi\)
−0.754585 + 0.656202i \(0.772162\pi\)
\(830\) −37.1342 4.96992i −1.28895 0.172508i
\(831\) −6.74002 + 3.89135i −0.233809 + 0.134990i
\(832\) −11.9480 + 25.9617i −0.414223 + 0.900059i
\(833\) 0 0
\(834\) −22.3150 33.8666i −0.772706 1.17271i
\(835\) −16.5275 + 33.8802i −0.571958 + 1.17247i
\(836\) 6.26335 + 8.38384i 0.216622 + 0.289961i
\(837\) 8.22443 + 30.6940i 0.284278 + 1.06094i
\(838\) −50.5292 + 16.7904i −1.74550 + 0.580016i
\(839\) −50.3921 −1.73973 −0.869864 0.493291i \(-0.835794\pi\)
−0.869864 + 0.493291i \(0.835794\pi\)
\(840\) 0 0
\(841\) 8.66571 0.298818
\(842\) 11.2353 3.73341i 0.387195 0.128662i
\(843\) 2.32395 + 8.67309i 0.0800410 + 0.298717i
\(844\) 7.57104 + 10.1343i 0.260606 + 0.348836i
\(845\) 0.503339 0.173272i 0.0173154 0.00596075i
\(846\) −36.8038 55.8557i −1.26534 1.92036i
\(847\) 0 0
\(848\) −0.861844 + 33.4678i −0.0295958 + 1.14929i
\(849\) 23.5989 13.6249i 0.809914 0.467604i
\(850\) −7.18224 2.42088i −0.246349 0.0830355i
\(851\) 33.9960 + 19.6276i 1.16537 + 0.672826i
\(852\) 13.5403 17.1834i 0.463882 0.588694i
\(853\) −12.0652 12.0652i −0.413104 0.413104i 0.469714 0.882818i \(-0.344357\pi\)
−0.882818 + 0.469714i \(0.844357\pi\)
\(854\) 0 0
\(855\) 3.88673 19.9877i 0.132923 0.683565i
\(856\) 29.0134 + 34.4013i 0.991658 + 1.17581i
\(857\) −5.32241 19.8635i −0.181810 0.678525i −0.995291 0.0969329i \(-0.969097\pi\)
0.813481 0.581592i \(-0.197570\pi\)
\(858\) 42.0094 47.2851i 1.43418 1.61429i
\(859\) −21.8383 37.8250i −0.745112 1.29057i −0.950142 0.311816i \(-0.899063\pi\)
0.205030 0.978756i \(-0.434271\pi\)
\(860\) 11.0258 2.09495i 0.375975 0.0714372i
\(861\) 0 0
\(862\) −6.89769 1.41825i −0.234936 0.0483057i
\(863\) 24.6545 + 6.60616i 0.839250 + 0.224876i 0.652745 0.757578i \(-0.273617\pi\)
0.186505 + 0.982454i \(0.440284\pi\)
\(864\) −47.6909 + 50.9745i −1.62248 + 1.73419i
\(865\) −0.493887 + 0.0344997i −0.0167927 + 0.00117302i
\(866\) 4.83731 + 2.42433i 0.164378 + 0.0823820i
\(867\) −35.2990 35.2990i −1.19882 1.19882i
\(868\) 0 0
\(869\) 13.7205i 0.465437i
\(870\) −35.5699 27.4152i −1.20593 0.929464i
\(871\) −17.0618 9.85064i −0.578117 0.333776i
\(872\) −7.64410 + 3.58786i −0.258862 + 0.121500i
\(873\) 22.9023 85.4726i 0.775126 2.89281i
\(874\) −5.32368 8.07955i −0.180076 0.273295i
\(875\) 0 0
\(876\) −13.9742 6.00021i −0.472145 0.202728i
\(877\) −49.9561 13.3857i −1.68690 0.452002i −0.717310 0.696754i \(-0.754627\pi\)
−0.969586 + 0.244751i \(0.921294\pi\)
\(878\) 39.6837 + 35.2561i 1.33926 + 1.18984i
\(879\) 36.8034 63.7454i 1.24135 2.15008i
\(880\) 31.5450 + 16.4068i 1.06338 + 0.553073i
\(881\) 29.9298 1.00836 0.504181 0.863598i \(-0.331795\pi\)
0.504181 + 0.863598i \(0.331795\pi\)
\(882\) 0 0
\(883\) 22.0057 22.0057i 0.740550 0.740550i −0.232134 0.972684i \(-0.574571\pi\)
0.972684 + 0.232134i \(0.0745707\pi\)
\(884\) 0.901783 + 7.60498i 0.0303302 + 0.255783i
\(885\) −4.09515 58.6249i −0.137657 1.97065i
\(886\) −17.9169 + 1.05857i −0.601930 + 0.0355632i
\(887\) −12.4757 + 46.5601i −0.418894 + 1.56333i 0.358011 + 0.933717i \(0.383455\pi\)
−0.776905 + 0.629618i \(0.783212\pi\)
\(888\) 55.2019 + 38.4469i 1.85245 + 1.29019i
\(889\) 0 0
\(890\) −27.4944 11.4577i −0.921613 0.384064i
\(891\) 62.3408 35.9925i 2.08850 1.20579i
\(892\) 0.459672 3.17516i 0.0153910 0.106312i
\(893\) 8.69230 2.32910i 0.290877 0.0779402i
\(894\) −7.86088 3.93966i −0.262907 0.131762i
\(895\) 44.7870 + 8.70910i 1.49706 + 0.291113i
\(896\) 0 0
\(897\) −41.3518 + 41.3518i −1.38070 + 1.38070i
\(898\) −11.2219 33.7713i −0.374481 1.12696i
\(899\) −5.80603 + 10.0563i −0.193642 + 0.335398i
\(900\) −17.6189 66.9018i −0.587295 2.23006i
\(901\) 4.48563 + 7.76933i 0.149438 + 0.258834i
\(902\) −62.3256 12.8149i −2.07522 0.426689i
\(903\) 0 0
\(904\) 1.60376 0.286935i 0.0533404 0.00954330i
\(905\) 9.58543 + 27.8447i 0.318630 + 0.925589i
\(906\) 2.26694 + 38.3694i 0.0753141 + 1.27474i
\(907\) −7.78619 + 2.08630i −0.258536 + 0.0692745i −0.385759 0.922600i \(-0.626060\pi\)
0.127223 + 0.991874i \(0.459394\pi\)
\(908\) −6.20259 + 7.87147i −0.205840 + 0.261224i
\(909\) 71.0708i 2.35727i
\(910\) 0 0
\(911\) 15.9014i 0.526836i −0.964682 0.263418i \(-0.915150\pi\)
0.964682 0.263418i \(-0.0848498\pi\)
\(912\) −7.91821 14.5684i −0.262198 0.482410i
\(913\) 45.4934 12.1899i 1.50561 0.403427i
\(914\) 38.3983 2.26865i 1.27010 0.0750402i
\(915\) 8.52670 + 4.15952i 0.281884 + 0.137509i
\(916\) 8.14218 18.9628i 0.269025 0.626548i
\(917\) 0 0
\(918\) −3.76729 + 18.3223i −0.124339 + 0.604727i
\(919\) 22.6796 + 39.2823i 0.748132 + 1.29580i 0.948717 + 0.316127i \(0.102382\pi\)
−0.200585 + 0.979676i \(0.564284\pi\)
\(920\) −28.2203 16.8631i −0.930395 0.555960i
\(921\) −33.4614 + 57.9569i −1.10259 + 1.90975i
\(922\) −26.8482 + 8.92144i −0.884199 + 0.293812i
\(923\) 8.77375 8.77375i 0.288792 0.288792i
\(924\) 0 0
\(925\) −34.7607 + 14.7490i −1.14292 + 0.484946i
\(926\) 9.09682 18.1511i 0.298940 0.596481i
\(927\) 27.9322 7.48442i 0.917415 0.245821i
\(928\) −25.4947 + 0.848461i −0.836903 + 0.0278521i
\(929\) 33.4187 19.2943i 1.09643 0.633025i 0.161150 0.986930i \(-0.448480\pi\)
0.935281 + 0.353905i \(0.115146\pi\)
\(930\) −23.7145 + 9.76328i −0.777628 + 0.320150i
\(931\) 0 0
\(932\) 9.47283 + 23.7289i 0.310293 + 0.777265i
\(933\) −22.9641 + 85.7032i −0.751811 + 2.80580i
\(934\) 0.344827 + 5.83641i 0.0112831 + 0.190973i
\(935\) 9.50483 0.663945i 0.310841 0.0217133i
\(936\) −53.4367 + 45.0676i −1.74663 + 1.47308i
\(937\) −15.2293 + 15.2293i −0.497519 + 0.497519i −0.910665 0.413146i \(-0.864430\pi\)
0.413146 + 0.910665i \(0.364430\pi\)
\(938\) 0 0
\(939\) 80.8383 2.63806
\(940\) 23.1597 19.9615i 0.755387 0.651072i
\(941\) −23.7077 + 41.0629i −0.772848 + 1.33861i 0.163148 + 0.986602i \(0.447835\pi\)
−0.935996 + 0.352010i \(0.885498\pi\)
\(942\) 46.8965 52.7859i 1.52797 1.71986i
\(943\) 56.8256 + 15.2264i 1.85050 + 0.495839i
\(944\) −22.9883 24.2035i −0.748205 0.787758i
\(945\) 0 0
\(946\) −11.7811 + 7.76266i −0.383036 + 0.252386i
\(947\) −9.12616 + 34.0593i −0.296560 + 1.10678i 0.643410 + 0.765522i \(0.277519\pi\)
−0.939970 + 0.341257i \(0.889147\pi\)
\(948\) −3.11475 + 21.5149i −0.101162 + 0.698773i
\(949\) −7.46983 4.31271i −0.242481 0.139996i
\(950\) 9.28866 + 0.588812i 0.301364 + 0.0191036i
\(951\) 82.8346i 2.68610i
\(952\) 0 0
\(953\) 34.4409 + 34.4409i 1.11565 + 1.11565i 0.992372 + 0.123279i \(0.0393409\pi\)
0.123279 + 0.992372i \(0.460659\pi\)
\(954\) −36.6905 + 73.2093i −1.18790 + 2.37024i
\(955\) 20.4239 + 17.7569i 0.660903 + 0.574599i
\(956\) 30.6439 22.8933i 0.991095 0.740421i
\(957\) 54.5320 + 14.6118i 1.76277 + 0.472332i
\(958\) 2.65709 12.9228i 0.0858467 0.417518i
\(959\) 0 0
\(960\) −45.7406 32.8884i −1.47627 1.06147i
\(961\) −12.1844 21.1040i −0.393046 0.680775i
\(962\) 28.5231 + 25.3407i 0.919621 + 0.817017i
\(963\) 28.4896 + 106.325i 0.918065 + 3.42627i
\(964\) −3.33435 28.1195i −0.107392 0.905667i
\(965\) −0.877821 1.30163i −0.0282581 0.0419009i
\(966\) 0 0
\(967\) −28.3737 28.3737i −0.912437 0.912437i 0.0840261 0.996464i \(-0.473222\pi\)
−0.996464 + 0.0840261i \(0.973222\pi\)
\(968\) −13.5372 1.15015i −0.435101 0.0369674i
\(969\) −3.84795 2.22162i −0.123614 0.0713686i
\(970\) 40.0894 + 5.36542i 1.28719 + 0.172273i
\(971\) 6.28643 3.62947i 0.201741 0.116475i −0.395726 0.918369i \(-0.629507\pi\)
0.597467 + 0.801893i \(0.296174\pi\)
\(972\) −37.1635 + 14.8361i −1.19202 + 0.475867i
\(973\) 0 0
\(974\) −34.2406 + 22.5614i −1.09714 + 0.722913i
\(975\) −7.82079 55.7068i −0.250466 1.78405i
\(976\) 5.23937 1.26027i 0.167708 0.0403402i
\(977\) 3.08533 + 11.5146i 0.0987084 + 0.368385i 0.997556 0.0698774i \(-0.0222608\pi\)
−0.898847 + 0.438262i \(0.855594\pi\)
\(978\) −9.78326 29.4418i −0.312834 0.941444i
\(979\) 37.4447 1.19674
\(980\) 0 0
\(981\) −20.6545 −0.659446
\(982\) 12.5678 + 37.8217i 0.401056 + 1.20694i
\(983\) −4.89406 18.2649i −0.156096 0.582560i −0.999009 0.0445091i \(-0.985828\pi\)
0.842913 0.538050i \(-0.180839\pi\)
\(984\) 94.8227 + 34.2436i 3.02284 + 1.09165i
\(985\) −3.32315 1.62111i −0.105884 0.0516528i
\(986\) −5.70785 + 3.76095i −0.181775 + 0.119773i
\(987\) 0 0
\(988\) −3.48673 8.73406i −0.110928 0.277867i
\(989\) 11.2969 6.52224i 0.359219 0.207395i
\(990\) 52.7963 + 69.1120i 1.67798 + 2.19652i
\(991\) −19.1208 11.0394i −0.607392 0.350678i 0.164552 0.986368i \(-0.447382\pi\)
−0.771944 + 0.635690i \(0.780716\pi\)
\(992\) −6.85985 + 12.8507i −0.217801 + 0.408009i
\(993\) −38.3078 38.3078i −1.21566 1.21566i
\(994\) 0 0
\(995\) −38.3050 7.44864i −1.21435 0.236138i
\(996\) −74.1048 + 8.78719i −2.34810 + 0.278433i
\(997\) −7.72606 28.8340i −0.244687 0.913183i −0.973541 0.228514i \(-0.926613\pi\)
0.728854 0.684669i \(-0.240053\pi\)
\(998\) 32.8521 + 29.1867i 1.03992 + 0.923890i
\(999\) 46.5962 + 80.7070i 1.47424 + 2.55346i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.j.263.1 64
4.3 odd 2 inner 980.2.x.j.263.4 64
5.2 odd 4 inner 980.2.x.j.67.7 64
7.2 even 3 inner 980.2.x.j.863.14 64
7.3 odd 6 980.2.k.i.883.12 yes 32
7.4 even 3 980.2.k.i.883.11 yes 32
7.5 odd 6 inner 980.2.x.j.863.13 64
7.6 odd 2 inner 980.2.x.j.263.2 64
20.7 even 4 inner 980.2.x.j.67.14 64
28.3 even 6 980.2.k.i.883.15 yes 32
28.11 odd 6 980.2.k.i.883.16 yes 32
28.19 even 6 inner 980.2.x.j.863.8 64
28.23 odd 6 inner 980.2.x.j.863.7 64
28.27 even 2 inner 980.2.x.j.263.3 64
35.2 odd 12 inner 980.2.x.j.667.4 64
35.12 even 12 inner 980.2.x.j.667.3 64
35.17 even 12 980.2.k.i.687.15 yes 32
35.27 even 4 inner 980.2.x.j.67.8 64
35.32 odd 12 980.2.k.i.687.16 yes 32
140.27 odd 4 inner 980.2.x.j.67.13 64
140.47 odd 12 inner 980.2.x.j.667.2 64
140.67 even 12 980.2.k.i.687.11 32
140.87 odd 12 980.2.k.i.687.12 yes 32
140.107 even 12 inner 980.2.x.j.667.1 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.k.i.687.11 32 140.67 even 12
980.2.k.i.687.12 yes 32 140.87 odd 12
980.2.k.i.687.15 yes 32 35.17 even 12
980.2.k.i.687.16 yes 32 35.32 odd 12
980.2.k.i.883.11 yes 32 7.4 even 3
980.2.k.i.883.12 yes 32 7.3 odd 6
980.2.k.i.883.15 yes 32 28.3 even 6
980.2.k.i.883.16 yes 32 28.11 odd 6
980.2.x.j.67.7 64 5.2 odd 4 inner
980.2.x.j.67.8 64 35.27 even 4 inner
980.2.x.j.67.13 64 140.27 odd 4 inner
980.2.x.j.67.14 64 20.7 even 4 inner
980.2.x.j.263.1 64 1.1 even 1 trivial
980.2.x.j.263.2 64 7.6 odd 2 inner
980.2.x.j.263.3 64 28.27 even 2 inner
980.2.x.j.263.4 64 4.3 odd 2 inner
980.2.x.j.667.1 64 140.107 even 12 inner
980.2.x.j.667.2 64 140.47 odd 12 inner
980.2.x.j.667.3 64 35.12 even 12 inner
980.2.x.j.667.4 64 35.2 odd 12 inner
980.2.x.j.863.7 64 28.23 odd 6 inner
980.2.x.j.863.8 64 28.19 even 6 inner
980.2.x.j.863.13 64 7.5 odd 6 inner
980.2.x.j.863.14 64 7.2 even 3 inner