Properties

Label 980.2.x.j.667.4
Level $980$
Weight $2$
Character 980.667
Analytic conductor $7.825$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(67,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,4,0,0,0,0,0,16,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 667.4
Character \(\chi\) \(=\) 980.667
Dual form 980.2.x.j.263.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939280 + 1.05724i) q^{2} +(0.815107 - 3.04202i) q^{3} +(-0.235506 - 1.98609i) q^{4} +(0.727838 - 2.11430i) q^{5} +(2.45053 + 3.71907i) q^{6} +(2.32097 + 1.61650i) q^{8} +(-5.99142 - 3.45915i) q^{9} +(1.55167 + 2.75542i) q^{10} +(-3.44275 + 1.98767i) q^{11} +(-6.23368 - 0.902458i) q^{12} +(-2.52606 + 2.52606i) q^{13} +(-5.83847 - 3.93748i) q^{15} +(-3.88907 + 0.935470i) q^{16} +(-0.277420 + 1.03535i) q^{17} +(9.28476 - 3.08525i) q^{18} +(-0.658126 + 1.13991i) q^{19} +(-4.37059 - 0.947619i) q^{20} +(1.13226 - 5.50679i) q^{22} +(-5.02084 + 1.34533i) q^{23} +(6.80928 - 5.74282i) q^{24} +(-3.94050 - 3.07773i) q^{25} +(-0.297970 - 5.04332i) q^{26} +(-8.72570 + 8.72570i) q^{27} -4.50936i q^{29} +(9.64681 - 2.47426i) q^{30} +(-2.23010 + 1.28755i) q^{31} +(2.66391 - 4.99035i) q^{32} +(3.24033 + 12.0931i) q^{33} +(-0.834032 - 1.26578i) q^{34} +(-5.45915 + 12.7141i) q^{36} +(7.29473 - 1.95462i) q^{37} +(-0.586989 - 1.76649i) q^{38} +(5.62531 + 9.74333i) q^{39} +(5.10706 - 3.73067i) q^{40} +11.3180 q^{41} +(-1.77452 - 1.77452i) q^{43} +(4.75847 + 6.36949i) q^{44} +(-11.6744 + 10.1499i) q^{45} +(3.29364 - 6.57186i) q^{46} +(-1.76949 - 6.60383i) q^{47} +(-0.324292 + 12.5932i) q^{48} +(6.95513 - 1.27520i) q^{50} +(2.92342 + 1.68784i) q^{51} +(5.61187 + 4.42207i) q^{52} +(-8.08454 - 2.16624i) q^{53} +(-1.02927 - 17.4210i) q^{54} +(1.69676 + 8.72570i) q^{55} +(2.93118 + 2.93118i) q^{57} +(4.76746 + 4.23555i) q^{58} +(-4.17259 - 7.22714i) q^{59} +(-6.44517 + 12.5230i) q^{60} +(0.673601 - 1.16671i) q^{61} +(0.733444 - 3.56712i) q^{62} +(2.77382 + 7.50373i) q^{64} +(3.50228 + 7.17940i) q^{65} +(-15.8288 - 7.93298i) q^{66} +(-5.32697 - 1.42736i) q^{67} +(2.12162 + 0.307150i) q^{68} +16.3701i q^{69} +3.47330i q^{71} +(-8.31418 - 17.7137i) q^{72} +(2.33220 + 0.624911i) q^{73} +(-4.78530 + 9.54820i) q^{74} +(-12.5745 + 9.47841i) q^{75} +(2.41895 + 1.03864i) q^{76} +(-15.5848 - 3.20442i) q^{78} +(1.72570 - 2.98900i) q^{79} +(-0.852754 + 8.90353i) q^{80} +(9.05394 + 15.6819i) q^{81} +(-10.6307 + 11.9658i) q^{82} +(-8.37751 - 8.37751i) q^{83} +(1.98711 + 1.34011i) q^{85} +(3.54285 - 0.209319i) q^{86} +(-13.7176 - 3.67561i) q^{87} +(-11.2036 - 0.951889i) q^{88} +(8.15730 + 4.70962i) q^{89} +(0.234670 - 21.8763i) q^{90} +(3.85438 + 9.65498i) q^{92} +(2.09898 + 7.83352i) q^{93} +(8.64387 + 4.33207i) q^{94} +(1.93109 + 2.22114i) q^{95} +(-13.0094 - 12.1714i) q^{96} +(-9.04418 - 9.04418i) q^{97} +27.5026 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 4 q^{2} + 16 q^{8} - 8 q^{16} + 40 q^{18} - 72 q^{22} - 32 q^{25} + 36 q^{30} - 16 q^{32} - 176 q^{36} + 48 q^{37} + 56 q^{50} - 16 q^{53} - 32 q^{57} - 36 q^{58} + 80 q^{60} - 64 q^{65} - 56 q^{72}+ \cdots - 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939280 + 1.05724i −0.664171 + 0.747580i
\(3\) 0.815107 3.04202i 0.470602 1.75631i −0.167011 0.985955i \(-0.553412\pi\)
0.637613 0.770357i \(-0.279922\pi\)
\(4\) −0.235506 1.98609i −0.117753 0.993043i
\(5\) 0.727838 2.11430i 0.325499 0.945542i
\(6\) 2.45053 + 3.71907i 1.00042 + 1.51830i
\(7\) 0 0
\(8\) 2.32097 + 1.61650i 0.820588 + 0.571521i
\(9\) −5.99142 3.45915i −1.99714 1.15305i
\(10\) 1.55167 + 2.75542i 0.490682 + 0.871339i
\(11\) −3.44275 + 1.98767i −1.03803 + 0.599306i −0.919274 0.393618i \(-0.871223\pi\)
−0.118754 + 0.992924i \(0.537890\pi\)
\(12\) −6.23368 0.902458i −1.79951 0.260517i
\(13\) −2.52606 + 2.52606i −0.700602 + 0.700602i −0.964540 0.263937i \(-0.914979\pi\)
0.263937 + 0.964540i \(0.414979\pi\)
\(14\) 0 0
\(15\) −5.83847 3.93748i −1.50749 1.01665i
\(16\) −3.88907 + 0.935470i −0.972268 + 0.233868i
\(17\) −0.277420 + 1.03535i −0.0672843 + 0.251108i −0.991373 0.131069i \(-0.958159\pi\)
0.924089 + 0.382177i \(0.124826\pi\)
\(18\) 9.28476 3.08525i 2.18844 0.727200i
\(19\) −0.658126 + 1.13991i −0.150984 + 0.261513i −0.931590 0.363512i \(-0.881578\pi\)
0.780605 + 0.625024i \(0.214911\pi\)
\(20\) −4.37059 0.947619i −0.977293 0.211894i
\(21\) 0 0
\(22\) 1.13226 5.50679i 0.241399 1.17405i
\(23\) −5.02084 + 1.34533i −1.04692 + 0.280521i −0.740977 0.671530i \(-0.765637\pi\)
−0.305940 + 0.952051i \(0.598971\pi\)
\(24\) 6.80928 5.74282i 1.38994 1.17225i
\(25\) −3.94050 3.07773i −0.788101 0.615546i
\(26\) −0.297970 5.04332i −0.0584366 0.989077i
\(27\) −8.72570 + 8.72570i −1.67926 + 1.67926i
\(28\) 0 0
\(29\) 4.50936i 0.837366i −0.908132 0.418683i \(-0.862492\pi\)
0.908132 0.418683i \(-0.137508\pi\)
\(30\) 9.64681 2.47426i 1.76126 0.451736i
\(31\) −2.23010 + 1.28755i −0.400539 + 0.231251i −0.686716 0.726925i \(-0.740949\pi\)
0.286178 + 0.958177i \(0.407615\pi\)
\(32\) 2.66391 4.99035i 0.470918 0.882177i
\(33\) 3.24033 + 12.0931i 0.564069 + 2.10513i
\(34\) −0.834032 1.26578i −0.143035 0.217079i
\(35\) 0 0
\(36\) −5.45915 + 12.7141i −0.909858 + 2.11902i
\(37\) 7.29473 1.95462i 1.19925 0.321337i 0.396712 0.917943i \(-0.370151\pi\)
0.802534 + 0.596606i \(0.203485\pi\)
\(38\) −0.586989 1.76649i −0.0952222 0.286562i
\(39\) 5.62531 + 9.74333i 0.900771 + 1.56018i
\(40\) 5.10706 3.73067i 0.807498 0.589871i
\(41\) 11.3180 1.76757 0.883784 0.467894i \(-0.154987\pi\)
0.883784 + 0.467894i \(0.154987\pi\)
\(42\) 0 0
\(43\) −1.77452 1.77452i −0.270611 0.270611i 0.558735 0.829346i \(-0.311287\pi\)
−0.829346 + 0.558735i \(0.811287\pi\)
\(44\) 4.75847 + 6.36949i 0.717367 + 0.960236i
\(45\) −11.6744 + 10.1499i −1.74032 + 1.51306i
\(46\) 3.29364 6.57186i 0.485620 0.968968i
\(47\) −1.76949 6.60383i −0.258107 0.963268i −0.966336 0.257285i \(-0.917172\pi\)
0.708229 0.705983i \(-0.249495\pi\)
\(48\) −0.324292 + 12.5932i −0.0468075 + 1.81766i
\(49\) 0 0
\(50\) 6.95513 1.27520i 0.983604 0.180340i
\(51\) 2.92342 + 1.68784i 0.409360 + 0.236344i
\(52\) 5.61187 + 4.42207i 0.778226 + 0.613230i
\(53\) −8.08454 2.16624i −1.11050 0.297557i −0.343465 0.939166i \(-0.611601\pi\)
−0.767032 + 0.641609i \(0.778267\pi\)
\(54\) −1.02927 17.4210i −0.140066 2.37070i
\(55\) 1.69676 + 8.72570i 0.228792 + 1.17657i
\(56\) 0 0
\(57\) 2.93118 + 2.93118i 0.388244 + 0.388244i
\(58\) 4.76746 + 4.23555i 0.625999 + 0.556155i
\(59\) −4.17259 7.22714i −0.543225 0.940893i −0.998716 0.0506532i \(-0.983870\pi\)
0.455491 0.890240i \(-0.349464\pi\)
\(60\) −6.44517 + 12.5230i −0.832068 + 1.61671i
\(61\) 0.673601 1.16671i 0.0862458 0.149382i −0.819676 0.572828i \(-0.805846\pi\)
0.905921 + 0.423446i \(0.139180\pi\)
\(62\) 0.733444 3.56712i 0.0931475 0.453025i
\(63\) 0 0
\(64\) 2.77382 + 7.50373i 0.346728 + 0.937966i
\(65\) 3.50228 + 7.17940i 0.434404 + 0.890495i
\(66\) −15.8288 7.93298i −1.94840 0.976483i
\(67\) −5.32697 1.42736i −0.650793 0.174379i −0.0817054 0.996657i \(-0.526037\pi\)
−0.569087 + 0.822277i \(0.692703\pi\)
\(68\) 2.12162 + 0.307150i 0.257284 + 0.0372474i
\(69\) 16.3701i 1.97073i
\(70\) 0 0
\(71\) 3.47330i 0.412205i 0.978530 + 0.206102i \(0.0660780\pi\)
−0.978530 + 0.206102i \(0.933922\pi\)
\(72\) −8.31418 17.7137i −0.979836 2.08758i
\(73\) 2.33220 + 0.624911i 0.272963 + 0.0731403i 0.392704 0.919665i \(-0.371540\pi\)
−0.119741 + 0.992805i \(0.538206\pi\)
\(74\) −4.78530 + 9.54820i −0.556280 + 1.10996i
\(75\) −12.5745 + 9.47841i −1.45197 + 1.09447i
\(76\) 2.41895 + 1.03864i 0.277472 + 0.119140i
\(77\) 0 0
\(78\) −15.5848 3.20442i −1.76463 0.362829i
\(79\) 1.72570 2.98900i 0.194157 0.336289i −0.752467 0.658630i \(-0.771136\pi\)
0.946624 + 0.322341i \(0.104470\pi\)
\(80\) −0.852754 + 8.90353i −0.0953408 + 0.995445i
\(81\) 9.05394 + 15.6819i 1.00599 + 1.74243i
\(82\) −10.6307 + 11.9658i −1.17397 + 1.32140i
\(83\) −8.37751 8.37751i −0.919551 0.919551i 0.0774458 0.996997i \(-0.475324\pi\)
−0.996997 + 0.0774458i \(0.975324\pi\)
\(84\) 0 0
\(85\) 1.98711 + 1.34011i 0.215533 + 0.145356i
\(86\) 3.54285 0.209319i 0.382036 0.0225714i
\(87\) −13.7176 3.67561i −1.47068 0.394066i
\(88\) −11.2036 0.951889i −1.19431 0.101472i
\(89\) 8.15730 + 4.70962i 0.864672 + 0.499219i 0.865574 0.500781i \(-0.166954\pi\)
−0.000902138 1.00000i \(0.500287\pi\)
\(90\) 0.234670 21.8763i 0.0247364 2.30596i
\(91\) 0 0
\(92\) 3.85438 + 9.65498i 0.401846 + 1.00660i
\(93\) 2.09898 + 7.83352i 0.217655 + 0.812298i
\(94\) 8.64387 + 4.33207i 0.891547 + 0.446819i
\(95\) 1.93109 + 2.22114i 0.198126 + 0.227884i
\(96\) −13.0094 12.1714i −1.32776 1.24223i
\(97\) −9.04418 9.04418i −0.918298 0.918298i 0.0786079 0.996906i \(-0.474952\pi\)
−0.996906 + 0.0786079i \(0.974952\pi\)
\(98\) 0 0
\(99\) 27.5026 2.76411
\(100\) −5.18463 + 8.55100i −0.518463 + 0.855100i
\(101\) −5.13644 8.89658i −0.511095 0.885242i −0.999917 0.0128590i \(-0.995907\pi\)
0.488822 0.872383i \(-0.337427\pi\)
\(102\) −4.53035 + 1.50540i −0.448572 + 0.149057i
\(103\) 4.03745 1.08183i 0.397821 0.106596i −0.0543611 0.998521i \(-0.517312\pi\)
0.452183 + 0.891925i \(0.350646\pi\)
\(104\) −9.94629 + 1.77953i −0.975314 + 0.174497i
\(105\) 0 0
\(106\) 9.88388 6.51257i 0.960007 0.632557i
\(107\) −4.11801 15.3686i −0.398104 1.48574i −0.816429 0.577446i \(-0.804050\pi\)
0.418326 0.908297i \(-0.362617\pi\)
\(108\) 19.3849 + 15.2750i 1.86532 + 1.46984i
\(109\) 2.58551 1.49274i 0.247647 0.142979i −0.371040 0.928617i \(-0.620999\pi\)
0.618686 + 0.785638i \(0.287665\pi\)
\(110\) −10.8189 6.40199i −1.03154 0.610405i
\(111\) 23.7839i 2.25747i
\(112\) 0 0
\(113\) −0.407307 + 0.407307i −0.0383162 + 0.0383162i −0.726005 0.687689i \(-0.758625\pi\)
0.687689 + 0.726005i \(0.258625\pi\)
\(114\) −5.85215 + 0.345757i −0.548104 + 0.0323831i
\(115\) −0.809931 + 11.5947i −0.0755265 + 1.08121i
\(116\) −8.95597 + 1.06198i −0.831541 + 0.0986024i
\(117\) 23.8727 6.39666i 2.20703 0.591371i
\(118\) 11.5600 + 2.37688i 1.06419 + 0.218810i
\(119\) 0 0
\(120\) −7.18598 18.5767i −0.655987 1.69581i
\(121\) 2.40168 4.15983i 0.218334 0.378166i
\(122\) 0.600792 + 1.80803i 0.0543932 + 0.163691i
\(123\) 9.22535 34.4295i 0.831822 3.10440i
\(124\) 3.08239 + 4.12595i 0.276807 + 0.370522i
\(125\) −9.37529 + 6.09130i −0.838551 + 0.544823i
\(126\) 0 0
\(127\) −10.3756 + 10.3756i −0.920687 + 0.920687i −0.997078 0.0763907i \(-0.975660\pi\)
0.0763907 + 0.997078i \(0.475660\pi\)
\(128\) −10.5386 4.11551i −0.931492 0.363763i
\(129\) −6.84453 + 3.95169i −0.602627 + 0.347927i
\(130\) −10.8800 3.04072i −0.954235 0.266689i
\(131\) 8.53900 + 4.92999i 0.746056 + 0.430736i 0.824267 0.566201i \(-0.191588\pi\)
−0.0782112 + 0.996937i \(0.524921\pi\)
\(132\) 23.2548 9.28357i 2.02407 0.808031i
\(133\) 0 0
\(134\) 6.51257 4.29119i 0.562600 0.370702i
\(135\) 12.0978 + 24.7996i 1.04121 + 2.13441i
\(136\) −2.31753 + 1.95456i −0.198726 + 0.167602i
\(137\) 4.17809 15.5929i 0.356958 1.33219i −0.521044 0.853530i \(-0.674457\pi\)
0.878002 0.478657i \(-0.158876\pi\)
\(138\) −17.3071 15.3761i −1.47328 1.30890i
\(139\) 9.10621 0.772379 0.386189 0.922420i \(-0.373791\pi\)
0.386189 + 0.922420i \(0.373791\pi\)
\(140\) 0 0
\(141\) −21.5313 −1.81326
\(142\) −3.67210 3.26240i −0.308156 0.273774i
\(143\) 3.67561 13.7176i 0.307370 1.14712i
\(144\) 26.5370 + 7.84808i 2.21142 + 0.654007i
\(145\) −9.53412 3.28208i −0.791765 0.272562i
\(146\) −2.85127 + 1.87872i −0.235973 + 0.155484i
\(147\) 0 0
\(148\) −5.59999 14.0276i −0.460316 1.15306i
\(149\) −1.70973 0.987112i −0.140066 0.0808674i 0.428329 0.903623i \(-0.359102\pi\)
−0.568396 + 0.822755i \(0.692436\pi\)
\(150\) 1.78999 22.1971i 0.146152 1.81238i
\(151\) −7.47376 + 4.31498i −0.608206 + 0.351148i −0.772263 0.635303i \(-0.780875\pi\)
0.164057 + 0.986451i \(0.447542\pi\)
\(152\) −3.37016 + 1.58183i −0.273356 + 0.128303i
\(153\) 5.24355 5.24355i 0.423916 0.423916i
\(154\) 0 0
\(155\) 1.09911 + 5.65223i 0.0882827 + 0.453998i
\(156\) 18.0263 13.4670i 1.44326 1.07822i
\(157\) −4.10320 + 15.3134i −0.327471 + 1.22214i 0.584333 + 0.811514i \(0.301356\pi\)
−0.911804 + 0.410625i \(0.865311\pi\)
\(158\) 1.53917 + 4.63199i 0.122450 + 0.368501i
\(159\) −13.1795 + 22.8276i −1.04520 + 1.81035i
\(160\) −8.61218 9.26447i −0.680852 0.732421i
\(161\) 0 0
\(162\) −25.0837 5.15751i −1.97076 0.405212i
\(163\) 6.72849 1.80289i 0.527016 0.141213i 0.0145060 0.999895i \(-0.495382\pi\)
0.512510 + 0.858681i \(0.328716\pi\)
\(164\) −2.66545 22.4784i −0.208136 1.75527i
\(165\) 27.9268 + 1.95078i 2.17410 + 0.151868i
\(166\) 16.7258 0.988197i 1.29818 0.0766989i
\(167\) −11.9207 + 11.9207i −0.922449 + 0.922449i −0.997202 0.0747528i \(-0.976183\pi\)
0.0747528 + 0.997202i \(0.476183\pi\)
\(168\) 0 0
\(169\) 0.238064i 0.0183127i
\(170\) −3.28327 + 0.842110i −0.251816 + 0.0645869i
\(171\) 7.88621 4.55310i 0.603073 0.348185i
\(172\) −3.10643 + 3.94225i −0.236863 + 0.300594i
\(173\) −0.0573054 0.213867i −0.00435685 0.0162600i 0.963713 0.266940i \(-0.0860125\pi\)
−0.968070 + 0.250680i \(0.919346\pi\)
\(174\) 16.7706 11.0503i 1.27138 0.837721i
\(175\) 0 0
\(176\) 11.5297 10.9508i 0.869083 0.825447i
\(177\) −25.3862 + 6.80222i −1.90814 + 0.511286i
\(178\) −12.6412 + 4.20056i −0.947496 + 0.314845i
\(179\) −10.2023 17.6708i −0.762553 1.32078i −0.941531 0.336927i \(-0.890612\pi\)
0.178978 0.983853i \(-0.442721\pi\)
\(180\) 22.9080 + 20.7961i 1.70746 + 1.55005i
\(181\) 13.1697 0.978898 0.489449 0.872032i \(-0.337198\pi\)
0.489449 + 0.872032i \(0.337198\pi\)
\(182\) 0 0
\(183\) −3.00010 3.00010i −0.221774 0.221774i
\(184\) −13.8280 4.99374i −1.01941 0.368143i
\(185\) 1.17674 16.8459i 0.0865158 1.23853i
\(186\) −10.2534 5.13874i −0.751818 0.376791i
\(187\) −1.10284 4.11586i −0.0806477 0.300981i
\(188\) −12.6991 + 5.06960i −0.926174 + 0.369739i
\(189\) 0 0
\(190\) −4.16211 0.0446475i −0.301951 0.00323907i
\(191\) −10.4817 6.05163i −0.758431 0.437880i 0.0703012 0.997526i \(-0.477604\pi\)
−0.828732 + 0.559646i \(0.810937\pi\)
\(192\) 25.0875 2.32169i 1.81053 0.167554i
\(193\) −0.678188 0.181720i −0.0488170 0.0130805i 0.234328 0.972158i \(-0.424711\pi\)
−0.283145 + 0.959077i \(0.591378\pi\)
\(194\) 18.0569 1.06684i 1.29641 0.0765944i
\(195\) 24.6946 4.80202i 1.76842 0.343880i
\(196\) 0 0
\(197\) −1.16924 1.16924i −0.0833051 0.0833051i 0.664226 0.747531i \(-0.268761\pi\)
−0.747531 + 0.664226i \(0.768761\pi\)
\(198\) −25.8326 + 29.0768i −1.83584 + 2.06640i
\(199\) 8.72570 + 15.1133i 0.618548 + 1.07136i 0.989751 + 0.142805i \(0.0456122\pi\)
−0.371203 + 0.928552i \(0.621054\pi\)
\(200\) −4.17063 13.5132i −0.294908 0.955526i
\(201\) −8.68410 + 15.0413i −0.612529 + 1.06093i
\(202\) 14.2304 + 2.92593i 1.00124 + 0.205868i
\(203\) 0 0
\(204\) 2.66370 6.20365i 0.186497 0.434343i
\(205\) 8.23764 23.9295i 0.575342 1.67131i
\(206\) −2.64854 + 5.28469i −0.184533 + 0.368202i
\(207\) 34.7356 + 9.30738i 2.41429 + 0.646907i
\(208\) 7.46097 12.1871i 0.517325 0.845022i
\(209\) 5.23255i 0.361943i
\(210\) 0 0
\(211\) 6.32503i 0.435433i 0.976012 + 0.217717i \(0.0698608\pi\)
−0.976012 + 0.217717i \(0.930139\pi\)
\(212\) −2.39839 + 16.5667i −0.164722 + 1.13781i
\(213\) 10.5658 + 2.83111i 0.723960 + 0.193984i
\(214\) 20.1163 + 10.0817i 1.37512 + 0.689173i
\(215\) −5.04341 + 2.46029i −0.343958 + 0.167791i
\(216\) −34.3572 + 6.14697i −2.33771 + 0.418248i
\(217\) 0 0
\(218\) −0.850329 + 4.13560i −0.0575916 + 0.280098i
\(219\) 3.80199 6.58523i 0.256914 0.444989i
\(220\) 16.9304 5.42487i 1.14145 0.365745i
\(221\) −1.91456 3.31612i −0.128788 0.223067i
\(222\) 25.1453 + 22.3398i 1.68764 + 1.49935i
\(223\) −1.13429 1.13429i −0.0759578 0.0759578i 0.668107 0.744065i \(-0.267105\pi\)
−0.744065 + 0.668107i \(0.767105\pi\)
\(224\) 0 0
\(225\) 12.9629 + 32.0707i 0.864191 + 2.13805i
\(226\) −0.0480453 0.813196i −0.00319592 0.0540930i
\(227\) 4.84005 + 1.29689i 0.321246 + 0.0860775i 0.415838 0.909439i \(-0.363488\pi\)
−0.0945927 + 0.995516i \(0.530155\pi\)
\(228\) 5.13126 6.51188i 0.339826 0.431260i
\(229\) 8.93604 + 5.15923i 0.590510 + 0.340931i 0.765299 0.643675i \(-0.222591\pi\)
−0.174789 + 0.984606i \(0.555924\pi\)
\(230\) −11.4976 11.7470i −0.758131 0.774573i
\(231\) 0 0
\(232\) 7.28940 10.4661i 0.478572 0.687132i
\(233\) −3.30639 12.3396i −0.216609 0.808395i −0.985594 0.169129i \(-0.945905\pi\)
0.768985 0.639267i \(-0.220762\pi\)
\(234\) −15.6603 + 31.2473i −1.02375 + 2.04270i
\(235\) −15.2504 1.06529i −0.994824 0.0694919i
\(236\) −13.3710 + 9.98916i −0.870381 + 0.650239i
\(237\) −7.68598 7.68598i −0.499258 0.499258i
\(238\) 0 0
\(239\) −19.1256 −1.23713 −0.618565 0.785733i \(-0.712286\pi\)
−0.618565 + 0.785733i \(0.712286\pi\)
\(240\) 26.3896 + 9.85143i 1.70344 + 0.635907i
\(241\) 7.07911 + 12.2614i 0.456006 + 0.789825i 0.998745 0.0500757i \(-0.0159463\pi\)
−0.542740 + 0.839901i \(0.682613\pi\)
\(242\) 2.14208 + 6.44639i 0.137698 + 0.414389i
\(243\) 19.3260 5.17838i 1.23976 0.332193i
\(244\) −2.47583 1.06306i −0.158499 0.0680556i
\(245\) 0 0
\(246\) 27.7350 + 42.0923i 1.76832 + 2.68371i
\(247\) −1.21701 4.54193i −0.0774363 0.288996i
\(248\) −7.25734 0.616604i −0.460842 0.0391544i
\(249\) −32.3131 + 18.6560i −2.04776 + 1.18227i
\(250\) 2.36606 15.6334i 0.149643 0.988740i
\(251\) 8.70910i 0.549714i 0.961485 + 0.274857i \(0.0886305\pi\)
−0.961485 + 0.274857i \(0.911370\pi\)
\(252\) 0 0
\(253\) 14.6114 14.6114i 0.918611 0.918611i
\(254\) −1.22389 20.7151i −0.0767937 1.29978i
\(255\) 5.69636 4.95250i 0.356720 0.310138i
\(256\) 14.2498 7.27623i 0.890612 0.454764i
\(257\) −5.76635 + 1.54509i −0.359695 + 0.0963799i −0.434141 0.900845i \(-0.642948\pi\)
0.0744458 + 0.997225i \(0.476281\pi\)
\(258\) 2.25105 10.9480i 0.140144 0.681596i
\(259\) 0 0
\(260\) 13.4341 8.64661i 0.833147 0.536240i
\(261\) −15.5985 + 27.0174i −0.965524 + 1.67234i
\(262\) −13.2327 + 4.39711i −0.817518 + 0.271655i
\(263\) −4.09029 + 15.2652i −0.252218 + 0.941292i 0.717398 + 0.696663i \(0.245333\pi\)
−0.969617 + 0.244629i \(0.921334\pi\)
\(264\) −12.0278 + 33.3057i −0.740260 + 2.04982i
\(265\) −10.4643 + 15.5164i −0.642818 + 0.953167i
\(266\) 0 0
\(267\) 20.9758 20.9758i 1.28370 1.28370i
\(268\) −1.58032 + 10.9160i −0.0965334 + 0.666799i
\(269\) −6.92467 + 3.99796i −0.422205 + 0.243760i −0.696020 0.718022i \(-0.745048\pi\)
0.273815 + 0.961782i \(0.411714\pi\)
\(270\) −37.5823 10.5035i −2.28719 0.639222i
\(271\) 26.0319 + 15.0295i 1.58133 + 0.912980i 0.994666 + 0.103148i \(0.0328915\pi\)
0.586662 + 0.809832i \(0.300442\pi\)
\(272\) 0.110372 4.28606i 0.00669229 0.259880i
\(273\) 0 0
\(274\) 12.5610 + 19.0633i 0.758835 + 1.15166i
\(275\) 19.6837 + 2.76343i 1.18697 + 0.166641i
\(276\) 32.5124 3.85525i 1.95702 0.232059i
\(277\) −0.639600 + 2.38702i −0.0384299 + 0.143422i −0.982475 0.186394i \(-0.940320\pi\)
0.944045 + 0.329816i \(0.106987\pi\)
\(278\) −8.55328 + 9.62743i −0.512992 + 0.577415i
\(279\) 17.8153 1.06657
\(280\) 0 0
\(281\) −2.85110 −0.170082 −0.0850411 0.996377i \(-0.527102\pi\)
−0.0850411 + 0.996377i \(0.527102\pi\)
\(282\) 20.2239 22.7637i 1.20432 1.35556i
\(283\) −2.23944 + 8.35771i −0.133121 + 0.496814i −0.999999 0.00170684i \(-0.999457\pi\)
0.866878 + 0.498521i \(0.166123\pi\)
\(284\) 6.89827 0.817982i 0.409337 0.0485383i
\(285\) 8.33080 4.06396i 0.493474 0.240728i
\(286\) 11.0503 + 16.7706i 0.653418 + 0.991667i
\(287\) 0 0
\(288\) −33.2230 + 20.6844i −1.95768 + 1.21884i
\(289\) 13.7275 + 7.92555i 0.807497 + 0.466209i
\(290\) 12.4251 6.99704i 0.729630 0.410880i
\(291\) −34.8846 + 20.1406i −2.04497 + 1.18066i
\(292\) 0.691880 4.77912i 0.0404892 0.279677i
\(293\) 16.5266 16.5266i 0.965497 0.965497i −0.0339277 0.999424i \(-0.510802\pi\)
0.999424 + 0.0339277i \(0.0108016\pi\)
\(294\) 0 0
\(295\) −18.3173 + 3.56191i −1.06647 + 0.207382i
\(296\) 20.0905 + 7.25535i 1.16774 + 0.421709i
\(297\) 12.6966 47.3842i 0.736729 2.74951i
\(298\) 2.64953 0.880416i 0.153483 0.0510011i
\(299\) 9.28454 16.0813i 0.536939 0.930006i
\(300\) 21.7863 + 22.7417i 1.25783 + 1.31299i
\(301\) 0 0
\(302\) 2.45799 11.9545i 0.141442 0.687905i
\(303\) −31.2503 + 8.37350i −1.79528 + 0.481045i
\(304\) 1.49315 5.04884i 0.0856380 0.289571i
\(305\) −1.97650 2.27337i −0.113174 0.130173i
\(306\) 0.618521 + 10.4688i 0.0353585 + 0.598464i
\(307\) 15.0259 15.0259i 0.857575 0.857575i −0.133477 0.991052i \(-0.542614\pi\)
0.991052 + 0.133477i \(0.0426143\pi\)
\(308\) 0 0
\(309\) 13.1638i 0.748863i
\(310\) −7.00813 4.14701i −0.398035 0.235534i
\(311\) 24.3986 14.0866i 1.38352 0.798776i 0.390945 0.920414i \(-0.372148\pi\)
0.992574 + 0.121638i \(0.0388148\pi\)
\(312\) −2.69394 + 31.7073i −0.152514 + 1.79507i
\(313\) −6.64347 24.7938i −0.375511 1.40143i −0.852597 0.522570i \(-0.824973\pi\)
0.477085 0.878857i \(-0.341693\pi\)
\(314\) −12.3358 18.7216i −0.696150 1.05652i
\(315\) 0 0
\(316\) −6.34283 2.72346i −0.356812 0.153207i
\(317\) 25.4060 6.80753i 1.42695 0.382349i 0.539003 0.842304i \(-0.318801\pi\)
0.887942 + 0.459955i \(0.152134\pi\)
\(318\) −11.7550 35.3754i −0.659185 1.98375i
\(319\) 8.96312 + 15.5246i 0.501838 + 0.869209i
\(320\) 17.8840 0.403191i 0.999746 0.0225390i
\(321\) −50.1083 −2.79678
\(322\) 0 0
\(323\) −0.997621 0.997621i −0.0555091 0.0555091i
\(324\) 29.0133 21.6751i 1.61185 1.20417i
\(325\) 17.7285 2.17941i 0.983398 0.120892i
\(326\) −4.41385 + 8.80704i −0.244460 + 0.487777i
\(327\) −2.43349 9.08191i −0.134572 0.502231i
\(328\) 26.2687 + 18.2955i 1.45044 + 1.01020i
\(329\) 0 0
\(330\) −28.2935 + 27.6929i −1.55751 + 1.52445i
\(331\) −14.8975 8.60110i −0.818843 0.472759i 0.0311741 0.999514i \(-0.490075\pi\)
−0.850017 + 0.526755i \(0.823409\pi\)
\(332\) −14.6655 + 18.6114i −0.804874 + 1.02143i
\(333\) −50.4671 13.5226i −2.76558 0.741034i
\(334\) −1.40614 23.7998i −0.0769407 1.30227i
\(335\) −6.89503 + 10.2239i −0.376715 + 0.558592i
\(336\) 0 0
\(337\) −12.9038 12.9038i −0.702913 0.702913i 0.262121 0.965035i \(-0.415578\pi\)
−0.965035 + 0.262121i \(0.915578\pi\)
\(338\) −0.251691 0.223609i −0.0136902 0.0121627i
\(339\) 0.907038 + 1.57104i 0.0492635 + 0.0853270i
\(340\) 2.19360 4.26218i 0.118965 0.231149i
\(341\) 5.11846 8.86543i 0.277180 0.480090i
\(342\) −2.59364 + 12.6142i −0.140248 + 0.682100i
\(343\) 0 0
\(344\) −1.25009 6.98711i −0.0674002 0.376720i
\(345\) 34.6112 + 11.9148i 1.86340 + 0.641469i
\(346\) 0.279934 + 0.140295i 0.0150493 + 0.00754232i
\(347\) 18.2417 + 4.88784i 0.979264 + 0.262393i 0.712735 0.701434i \(-0.247456\pi\)
0.266529 + 0.963827i \(0.414123\pi\)
\(348\) −4.06951 + 28.1099i −0.218148 + 1.50685i
\(349\) 22.9263i 1.22721i −0.789611 0.613607i \(-0.789718\pi\)
0.789611 0.613607i \(-0.210282\pi\)
\(350\) 0 0
\(351\) 44.0832i 2.35299i
\(352\) 0.747983 + 22.4755i 0.0398676 + 1.19795i
\(353\) −28.9021 7.74430i −1.53830 0.412188i −0.612587 0.790403i \(-0.709871\pi\)
−0.925718 + 0.378215i \(0.876538\pi\)
\(354\) 16.6532 33.2285i 0.885108 1.76607i
\(355\) 7.34358 + 2.52800i 0.389757 + 0.134172i
\(356\) 7.43261 17.3102i 0.393928 0.917441i
\(357\) 0 0
\(358\) 28.2651 + 5.81164i 1.49385 + 0.307155i
\(359\) 4.27518 7.40483i 0.225635 0.390812i −0.730875 0.682512i \(-0.760888\pi\)
0.956510 + 0.291700i \(0.0942209\pi\)
\(360\) −43.5035 + 4.68592i −2.29283 + 0.246970i
\(361\) 8.63374 + 14.9541i 0.454407 + 0.787057i
\(362\) −12.3701 + 13.9235i −0.650156 + 0.731805i
\(363\) −10.6967 10.6967i −0.561429 0.561429i
\(364\) 0 0
\(365\) 3.01871 4.47613i 0.158007 0.234291i
\(366\) 5.98976 0.353887i 0.313090 0.0184980i
\(367\) 5.06713 + 1.35773i 0.264502 + 0.0708731i 0.388633 0.921393i \(-0.372948\pi\)
−0.124131 + 0.992266i \(0.539614\pi\)
\(368\) 18.2679 9.92893i 0.952280 0.517581i
\(369\) −67.8106 39.1505i −3.53008 2.03809i
\(370\) 16.7048 + 17.0671i 0.868442 + 0.887276i
\(371\) 0 0
\(372\) 15.0637 6.01360i 0.781017 0.311791i
\(373\) −0.799311 2.98307i −0.0413867 0.154457i 0.942140 0.335219i \(-0.108810\pi\)
−0.983527 + 0.180762i \(0.942144\pi\)
\(374\) 5.38732 + 2.69998i 0.278572 + 0.139612i
\(375\) 10.8880 + 33.4849i 0.562254 + 1.72915i
\(376\) 6.56819 18.1877i 0.338728 0.937959i
\(377\) 11.3909 + 11.3909i 0.586661 + 0.586661i
\(378\) 0 0
\(379\) 17.0070 0.873589 0.436794 0.899561i \(-0.356114\pi\)
0.436794 + 0.899561i \(0.356114\pi\)
\(380\) 3.95659 4.35841i 0.202969 0.223582i
\(381\) 23.1056 + 40.0201i 1.18374 + 2.05029i
\(382\) 16.2433 5.39751i 0.831079 0.276161i
\(383\) −26.3270 + 7.05430i −1.34525 + 0.360458i −0.858379 0.513017i \(-0.828528\pi\)
−0.486869 + 0.873475i \(0.661861\pi\)
\(384\) −21.1096 + 28.7041i −1.07724 + 1.46480i
\(385\) 0 0
\(386\) 0.829130 0.546320i 0.0422016 0.0278070i
\(387\) 4.49355 + 16.7702i 0.228420 + 0.852475i
\(388\) −15.8326 + 20.0925i −0.803777 + 1.02004i
\(389\) 10.9526 6.32350i 0.555320 0.320614i −0.195945 0.980615i \(-0.562777\pi\)
0.751265 + 0.660001i \(0.229444\pi\)
\(390\) −18.1183 + 30.6185i −0.917454 + 1.55043i
\(391\) 5.57153i 0.281764i
\(392\) 0 0
\(393\) 21.9573 21.9573i 1.10760 1.10760i
\(394\) 2.33441 0.137922i 0.117606 0.00694841i
\(395\) −5.06361 5.82416i −0.254778 0.293045i
\(396\) −6.47702 54.6225i −0.325483 2.74488i
\(397\) −11.7173 + 3.13965i −0.588076 + 0.157574i −0.540574 0.841297i \(-0.681793\pi\)
−0.0475022 + 0.998871i \(0.515126\pi\)
\(398\) −24.1743 4.97053i −1.21175 0.249150i
\(399\) 0 0
\(400\) 18.2040 + 8.28330i 0.910202 + 0.414165i
\(401\) 7.12839 12.3467i 0.355975 0.616566i −0.631310 0.775531i \(-0.717482\pi\)
0.987284 + 0.158965i \(0.0508156\pi\)
\(402\) −7.74544 23.3092i −0.386307 1.16255i
\(403\) 2.38094 8.88580i 0.118603 0.442633i
\(404\) −16.4597 + 12.2966i −0.818901 + 0.611779i
\(405\) 39.7459 7.72884i 1.97499 0.384049i
\(406\) 0 0
\(407\) −21.2288 + 21.2288i −1.05227 + 1.05227i
\(408\) 4.05678 + 8.64314i 0.200840 + 0.427899i
\(409\) 25.8941 14.9499i 1.28038 0.739227i 0.303461 0.952844i \(-0.401858\pi\)
0.976918 + 0.213617i \(0.0685243\pi\)
\(410\) 17.5618 + 31.1857i 0.867314 + 1.54015i
\(411\) −44.0282 25.4197i −2.17175 1.25386i
\(412\) −3.09945 7.76394i −0.152699 0.382502i
\(413\) 0 0
\(414\) −42.4666 + 27.9816i −2.08712 + 1.37522i
\(415\) −23.8100 + 11.6151i −1.16879 + 0.570161i
\(416\) 5.87670 + 19.3351i 0.288129 + 0.947982i
\(417\) 7.42253 27.7013i 0.363483 1.35654i
\(418\) 5.53205 + 4.91483i 0.270582 + 0.240392i
\(419\) −37.6505 −1.83935 −0.919674 0.392684i \(-0.871547\pi\)
−0.919674 + 0.392684i \(0.871547\pi\)
\(420\) 0 0
\(421\) −8.37171 −0.408012 −0.204006 0.978970i \(-0.565396\pi\)
−0.204006 + 0.978970i \(0.565396\pi\)
\(422\) −6.68706 5.94097i −0.325521 0.289202i
\(423\) −12.2419 + 45.6872i −0.595219 + 2.22139i
\(424\) −15.2622 18.0965i −0.741200 0.878843i
\(425\) 4.27969 3.22596i 0.207596 0.156482i
\(426\) −12.9174 + 8.51141i −0.625852 + 0.412379i
\(427\) 0 0
\(428\) −29.5536 + 11.7981i −1.42853 + 0.570285i
\(429\) −38.7331 22.3626i −1.87005 1.07967i
\(430\) 2.13606 7.64299i 0.103010 0.368578i
\(431\) −4.31232 + 2.48972i −0.207717 + 0.119925i −0.600250 0.799812i \(-0.704932\pi\)
0.392533 + 0.919738i \(0.371599\pi\)
\(432\) 25.7722 42.0975i 1.23997 2.02542i
\(433\) −2.70541 + 2.70541i −0.130014 + 0.130014i −0.769119 0.639106i \(-0.779305\pi\)
0.639106 + 0.769119i \(0.279305\pi\)
\(434\) 0 0
\(435\) −17.7555 + 26.3277i −0.851310 + 1.26232i
\(436\) −3.57362 4.78349i −0.171145 0.229087i
\(437\) 1.77079 6.60868i 0.0847084 0.316136i
\(438\) 3.39103 + 10.2050i 0.162030 + 0.487613i
\(439\) 18.7676 32.5065i 0.895731 1.55145i 0.0628330 0.998024i \(-0.479986\pi\)
0.832898 0.553427i \(-0.186680\pi\)
\(440\) −10.1670 + 22.9949i −0.484692 + 1.09624i
\(441\) 0 0
\(442\) 5.30425 + 1.09062i 0.252297 + 0.0518754i
\(443\) −12.2588 + 3.28474i −0.582433 + 0.156063i −0.537993 0.842950i \(-0.680817\pi\)
−0.0444406 + 0.999012i \(0.514151\pi\)
\(444\) −47.2370 + 5.60126i −2.24177 + 0.265824i
\(445\) 15.8947 13.8191i 0.753482 0.655089i
\(446\) 2.26463 0.133799i 0.107234 0.00633557i
\(447\) −4.39643 + 4.39643i −0.207944 + 0.207944i
\(448\) 0 0
\(449\) 25.1638i 1.18755i −0.804630 0.593777i \(-0.797636\pi\)
0.804630 0.593777i \(-0.202364\pi\)
\(450\) −46.0822 16.4186i −2.17234 0.773979i
\(451\) −38.9649 + 22.4964i −1.83479 + 1.05931i
\(452\) 0.904870 + 0.713024i 0.0425615 + 0.0335378i
\(453\) 7.03434 + 26.2525i 0.330502 + 1.23345i
\(454\) −5.91729 + 3.89895i −0.277712 + 0.182987i
\(455\) 0 0
\(456\) 2.06492 + 11.5414i 0.0966987 + 0.540478i
\(457\) −26.2723 + 7.03963i −1.22896 + 0.329300i −0.814176 0.580618i \(-0.802811\pi\)
−0.414788 + 0.909918i \(0.636144\pi\)
\(458\) −13.8480 + 4.60157i −0.647074 + 0.215017i
\(459\) −6.61343 11.4548i −0.308689 0.534664i
\(460\) 23.2189 1.12203i 1.08258 0.0523151i
\(461\) 20.0052 0.931737 0.465868 0.884854i \(-0.345742\pi\)
0.465868 + 0.884854i \(0.345742\pi\)
\(462\) 0 0
\(463\) 10.1515 + 10.1515i 0.471781 + 0.471781i 0.902491 0.430710i \(-0.141737\pi\)
−0.430710 + 0.902491i \(0.641737\pi\)
\(464\) 4.21837 + 17.5372i 0.195833 + 0.814145i
\(465\) 18.0901 + 1.26366i 0.838908 + 0.0586006i
\(466\) 16.1515 + 8.09471i 0.748206 + 0.374980i
\(467\) −1.07000 3.99329i −0.0495137 0.184787i 0.936740 0.350026i \(-0.113827\pi\)
−0.986254 + 0.165239i \(0.947161\pi\)
\(468\) −18.3265 45.9067i −0.847141 2.12204i
\(469\) 0 0
\(470\) 15.4506 15.1227i 0.712684 0.697557i
\(471\) 43.2390 + 24.9640i 1.99235 + 1.15028i
\(472\) 1.99824 23.5190i 0.0919764 1.08255i
\(473\) 9.63636 + 2.58206i 0.443080 + 0.118723i
\(474\) 15.3452 0.906625i 0.704828 0.0416427i
\(475\) 6.10167 2.46627i 0.279964 0.113160i
\(476\) 0 0
\(477\) 40.9445 + 40.9445i 1.87472 + 1.87472i
\(478\) 17.9643 20.2203i 0.821667 0.924855i
\(479\) 4.66449 + 8.07913i 0.213126 + 0.369145i 0.952691 0.303940i \(-0.0983022\pi\)
−0.739565 + 0.673085i \(0.764969\pi\)
\(480\) −35.2026 + 18.6469i −1.60677 + 0.851110i
\(481\) −13.4894 + 23.3644i −0.615065 + 1.06532i
\(482\) −19.6125 4.03256i −0.893324 0.183678i
\(483\) 0 0
\(484\) −8.82738 3.79027i −0.401245 0.172285i
\(485\) −25.7048 + 12.5394i −1.16719 + 0.569384i
\(486\) −12.6777 + 25.2961i −0.575073 + 1.14745i
\(487\) −28.0071 7.50448i −1.26912 0.340061i −0.439429 0.898278i \(-0.644819\pi\)
−0.829695 + 0.558217i \(0.811486\pi\)
\(488\) 3.44940 1.61903i 0.156147 0.0732898i
\(489\) 21.9378i 0.992060i
\(490\) 0 0
\(491\) 28.1818i 1.27183i −0.771760 0.635914i \(-0.780623\pi\)
0.771760 0.635914i \(-0.219377\pi\)
\(492\) −70.5525 10.2140i −3.18075 0.460482i
\(493\) 4.66874 + 1.25099i 0.210270 + 0.0563416i
\(494\) 5.94502 + 2.97948i 0.267479 + 0.134053i
\(495\) 20.0174 58.1486i 0.899716 2.61359i
\(496\) 7.46858 7.09358i 0.335349 0.318511i
\(497\) 0 0
\(498\) 10.6272 51.6859i 0.476218 2.31610i
\(499\) 15.5368 26.9104i 0.695521 1.20468i −0.274484 0.961592i \(-0.588507\pi\)
0.970005 0.243085i \(-0.0781595\pi\)
\(500\) 14.3058 + 17.1856i 0.639774 + 0.768563i
\(501\) 26.5463 + 45.9796i 1.18600 + 2.05422i
\(502\) −9.20760 8.18029i −0.410955 0.365104i
\(503\) 28.6110 + 28.6110i 1.27570 + 1.27570i 0.943049 + 0.332654i \(0.107944\pi\)
0.332654 + 0.943049i \(0.392056\pi\)
\(504\) 0 0
\(505\) −22.5485 + 4.38469i −1.00340 + 0.195116i
\(506\) 1.72354 + 29.1719i 0.0766206 + 1.29685i
\(507\) 0.724197 + 0.194048i 0.0321627 + 0.00861798i
\(508\) 23.0504 + 18.1633i 1.02270 + 0.805868i
\(509\) 10.6109 + 6.12618i 0.470318 + 0.271538i 0.716373 0.697718i \(-0.245801\pi\)
−0.246055 + 0.969256i \(0.579134\pi\)
\(510\) −0.114504 + 10.6742i −0.00507030 + 0.472661i
\(511\) 0 0
\(512\) −5.69184 + 21.8998i −0.251546 + 0.967845i
\(513\) −4.20388 15.6891i −0.185606 0.692690i
\(514\) 3.78269 7.54767i 0.166847 0.332914i
\(515\) 0.651297 9.32376i 0.0286996 0.410854i
\(516\) 9.46033 + 12.6632i 0.416468 + 0.557465i
\(517\) 19.2182 + 19.2182i 0.845214 + 0.845214i
\(518\) 0 0
\(519\) −0.697297 −0.0306080
\(520\) −3.47685 + 22.3246i −0.152470 + 0.979000i
\(521\) −17.7836 30.8021i −0.779115 1.34947i −0.932453 0.361292i \(-0.882336\pi\)
0.153338 0.988174i \(-0.450998\pi\)
\(522\) −13.9125 41.8683i −0.608933 1.83252i
\(523\) 11.0942 2.97269i 0.485118 0.129987i −0.00796695 0.999968i \(-0.502536\pi\)
0.493085 + 0.869981i \(0.335869\pi\)
\(524\) 7.78040 18.1202i 0.339889 0.791586i
\(525\) 0 0
\(526\) −12.2970 18.6627i −0.536175 0.813733i
\(527\) −0.714386 2.66612i −0.0311191 0.116138i
\(528\) −23.9146 43.9996i −1.04075 1.91484i
\(529\) 3.48031 2.00936i 0.151318 0.0873633i
\(530\) −6.57564 25.6376i −0.285628 1.11362i
\(531\) 57.7344i 2.50546i
\(532\) 0 0
\(533\) −28.5898 + 28.5898i −1.23836 + 1.23836i
\(534\) 2.47427 + 41.8786i 0.107072 + 1.81227i
\(535\) −35.4911 2.47918i −1.53441 0.107184i
\(536\) −10.0564 11.9239i −0.434371 0.515035i
\(537\) −62.0710 + 16.6319i −2.67856 + 0.717718i
\(538\) 2.27741 11.0762i 0.0981860 0.477530i
\(539\) 0 0
\(540\) 46.4050 29.8678i 1.99695 1.28530i
\(541\) −6.42555 + 11.1294i −0.276256 + 0.478489i −0.970451 0.241297i \(-0.922427\pi\)
0.694195 + 0.719787i \(0.255760\pi\)
\(542\) −40.3411 + 13.4050i −1.73280 + 0.575795i
\(543\) 10.7347 40.0626i 0.460672 1.71925i
\(544\) 4.42771 + 4.14250i 0.189837 + 0.177608i
\(545\) −1.27427 6.55300i −0.0545838 0.280700i
\(546\) 0 0
\(547\) 1.19674 1.19674i 0.0511688 0.0511688i −0.681059 0.732228i \(-0.738480\pi\)
0.732228 + 0.681059i \(0.238480\pi\)
\(548\) −31.9527 4.62584i −1.36495 0.197606i
\(549\) −8.07165 + 4.66017i −0.344490 + 0.198891i
\(550\) −21.4101 + 18.2147i −0.912929 + 0.776678i
\(551\) 5.14025 + 2.96772i 0.218982 + 0.126429i
\(552\) −26.4623 + 37.9945i −1.12631 + 1.61715i
\(553\) 0 0
\(554\) −1.92289 2.91829i −0.0816956 0.123986i
\(555\) −50.2863 17.3109i −2.13454 0.734805i
\(556\) −2.14457 18.0857i −0.0909499 0.767005i
\(557\) −4.30105 + 16.0517i −0.182241 + 0.680133i 0.812963 + 0.582315i \(0.197853\pi\)
−0.995204 + 0.0978181i \(0.968814\pi\)
\(558\) −16.7336 + 18.8350i −0.708388 + 0.797350i
\(559\) 8.96505 0.379181
\(560\) 0 0
\(561\) −13.4195 −0.566570
\(562\) 2.67798 3.01429i 0.112964 0.127150i
\(563\) 9.63625 35.9630i 0.406119 1.51566i −0.395862 0.918310i \(-0.629554\pi\)
0.801982 0.597349i \(-0.203779\pi\)
\(564\) 5.07076 + 42.7631i 0.213517 + 1.80065i
\(565\) 0.564715 + 1.15762i 0.0237577 + 0.0487015i
\(566\) −6.73263 10.2179i −0.282993 0.429488i
\(567\) 0 0
\(568\) −5.61460 + 8.06143i −0.235583 + 0.338250i
\(569\) −14.2519 8.22834i −0.597471 0.344950i 0.170575 0.985345i \(-0.445437\pi\)
−0.768046 + 0.640395i \(0.778771\pi\)
\(570\) −3.52839 + 12.6248i −0.147788 + 0.528796i
\(571\) 38.7542 22.3748i 1.62181 0.936355i 0.635380 0.772199i \(-0.280843\pi\)
0.986434 0.164156i \(-0.0524900\pi\)
\(572\) −28.1099 4.06951i −1.17533 0.170155i
\(573\) −26.9529 + 26.9529i −1.12597 + 1.12597i
\(574\) 0 0
\(575\) 23.9252 + 10.1515i 0.997749 + 0.423347i
\(576\) 9.33734 54.5530i 0.389056 2.27304i
\(577\) −3.54445 + 13.2280i −0.147557 + 0.550691i 0.852071 + 0.523426i \(0.175346\pi\)
−0.999628 + 0.0272648i \(0.991320\pi\)
\(578\) −21.2731 + 7.06888i −0.884845 + 0.294027i
\(579\) −1.10559 + 1.91494i −0.0459468 + 0.0795822i
\(580\) −4.27315 + 19.7085i −0.177433 + 0.818352i
\(581\) 0 0
\(582\) 11.4729 55.7990i 0.475569 2.31294i
\(583\) 32.1388 8.61157i 1.33105 0.356655i
\(584\) 4.40280 + 5.22041i 0.182189 + 0.216022i
\(585\) 3.85099 55.1296i 0.159219 2.27933i
\(586\) 1.94945 + 32.9957i 0.0805312 + 1.36304i
\(587\) 24.5126 24.5126i 1.01175 1.01175i 0.0118150 0.999930i \(-0.496239\pi\)
0.999930 0.0118150i \(-0.00376091\pi\)
\(588\) 0 0
\(589\) 3.38948i 0.139661i
\(590\) 13.4393 22.7114i 0.553286 0.935012i
\(591\) −4.50992 + 2.60380i −0.185513 + 0.107106i
\(592\) −26.5413 + 14.4257i −1.09084 + 0.592891i
\(593\) −11.8464 44.2116i −0.486475 1.81555i −0.573323 0.819329i \(-0.694346\pi\)
0.0868479 0.996222i \(-0.472321\pi\)
\(594\) 38.1708 + 57.9303i 1.56617 + 2.37691i
\(595\) 0 0
\(596\) −1.55784 + 3.62814i −0.0638115 + 0.148614i
\(597\) 53.0875 14.2248i 2.17273 0.582180i
\(598\) 8.28098 + 24.9208i 0.338635 + 1.01909i
\(599\) −15.6035 27.0260i −0.637540 1.10425i −0.985971 0.166918i \(-0.946619\pi\)
0.348430 0.937335i \(-0.386715\pi\)
\(600\) −44.5069 + 1.67246i −1.81699 + 0.0682780i
\(601\) −3.84939 −0.157020 −0.0785099 0.996913i \(-0.525016\pi\)
−0.0785099 + 0.996913i \(0.525016\pi\)
\(602\) 0 0
\(603\) 26.9786 + 26.9786i 1.09866 + 1.09866i
\(604\) 10.3300 + 13.8273i 0.420323 + 0.562626i
\(605\) −7.04708 8.10554i −0.286504 0.329537i
\(606\) 20.5000 40.9041i 0.832756 1.66162i
\(607\) −1.49094 5.56425i −0.0605152 0.225846i 0.929045 0.369967i \(-0.120631\pi\)
−0.989560 + 0.144121i \(0.953964\pi\)
\(608\) 3.93534 + 6.32089i 0.159599 + 0.256346i
\(609\) 0 0
\(610\) 4.25998 + 0.0456974i 0.172482 + 0.00185023i
\(611\) 21.1515 + 12.2118i 0.855698 + 0.494038i
\(612\) −11.6490 9.17926i −0.470884 0.371049i
\(613\) −19.6676 5.26991i −0.794366 0.212850i −0.161257 0.986912i \(-0.551555\pi\)
−0.633109 + 0.774063i \(0.718222\pi\)
\(614\) 1.77243 + 29.9995i 0.0715296 + 1.21068i
\(615\) −66.0796 44.5642i −2.66459 1.79700i
\(616\) 0 0
\(617\) −5.54965 5.54965i −0.223420 0.223420i 0.586517 0.809937i \(-0.300499\pi\)
−0.809937 + 0.586517i \(0.800499\pi\)
\(618\) 13.9173 + 12.3645i 0.559835 + 0.497373i
\(619\) 2.52112 + 4.36671i 0.101332 + 0.175513i 0.912234 0.409670i \(-0.134356\pi\)
−0.810901 + 0.585183i \(0.801023\pi\)
\(620\) 10.9670 3.51406i 0.440444 0.141128i
\(621\) 32.0714 55.5492i 1.28698 2.22911i
\(622\) −8.02430 + 39.0264i −0.321745 + 1.56482i
\(623\) 0 0
\(624\) −30.9919 32.6302i −1.24067 1.30625i
\(625\) 6.05513 + 24.2556i 0.242205 + 0.970225i
\(626\) 32.4530 + 16.2646i 1.29708 + 0.650063i
\(627\) −15.9175 4.26509i −0.635685 0.170331i
\(628\) 31.3800 + 4.54292i 1.25220 + 0.181282i
\(629\) 8.09482i 0.322762i
\(630\) 0 0
\(631\) 22.4036i 0.891874i 0.895064 + 0.445937i \(0.147130\pi\)
−0.895064 + 0.445937i \(0.852870\pi\)
\(632\) 8.83705 4.14779i 0.351519 0.164990i
\(633\) 19.2409 + 5.15558i 0.764756 + 0.204916i
\(634\) −16.6662 + 33.2544i −0.661900 + 1.32070i
\(635\) 14.3854 + 29.4889i 0.570866 + 1.17023i
\(636\) 48.4414 + 20.7996i 1.92083 + 0.824759i
\(637\) 0 0
\(638\) −24.8321 5.10577i −0.983111 0.202139i
\(639\) 12.0146 20.8100i 0.475292 0.823230i
\(640\) −16.3718 + 19.2864i −0.647153 + 0.762360i
\(641\) 21.5598 + 37.3426i 0.851559 + 1.47494i 0.879801 + 0.475343i \(0.157676\pi\)
−0.0282413 + 0.999601i \(0.508991\pi\)
\(642\) 47.0658 52.9765i 1.85754 2.09081i
\(643\) 1.10922 + 1.10922i 0.0437432 + 0.0437432i 0.728640 0.684897i \(-0.240153\pi\)
−0.684897 + 0.728640i \(0.740153\pi\)
\(644\) 0 0
\(645\) 3.37334 + 17.3476i 0.132825 + 0.683060i
\(646\) 1.99177 0.117678i 0.0783651 0.00462997i
\(647\) 32.5679 + 8.72654i 1.28038 + 0.343076i 0.833997 0.551769i \(-0.186047\pi\)
0.446378 + 0.894844i \(0.352714\pi\)
\(648\) −4.33590 + 51.0329i −0.170330 + 2.00476i
\(649\) 28.7304 + 16.5875i 1.12777 + 0.651116i
\(650\) −14.3478 + 20.7903i −0.562769 + 0.815462i
\(651\) 0 0
\(652\) −5.16530 12.9388i −0.202289 0.506721i
\(653\) 9.95952 + 37.1694i 0.389746 + 1.45455i 0.830547 + 0.556948i \(0.188028\pi\)
−0.440801 + 0.897605i \(0.645306\pi\)
\(654\) 11.8875 + 5.95768i 0.464837 + 0.232964i
\(655\) 16.6385 14.4657i 0.650119 0.565223i
\(656\) −44.0164 + 10.5876i −1.71855 + 0.413377i
\(657\) −11.8115 11.8115i −0.460811 0.460811i
\(658\) 0 0
\(659\) −12.4757 −0.485985 −0.242993 0.970028i \(-0.578129\pi\)
−0.242993 + 0.970028i \(0.578129\pi\)
\(660\) −2.70251 55.9244i −0.105195 2.17686i
\(661\) −3.31297 5.73823i −0.128859 0.223191i 0.794376 0.607427i \(-0.207798\pi\)
−0.923235 + 0.384236i \(0.874465\pi\)
\(662\) 23.0864 7.67141i 0.897278 0.298158i
\(663\) −11.6483 + 3.12115i −0.452382 + 0.121215i
\(664\) −5.90168 32.9862i −0.229030 1.28011i
\(665\) 0 0
\(666\) 61.6993 40.6542i 2.39080 1.57532i
\(667\) 6.06657 + 22.6407i 0.234898 + 0.876653i
\(668\) 26.4829 + 20.8681i 1.02465 + 0.807411i
\(669\) −4.37511 + 2.52597i −0.169151 + 0.0976596i
\(670\) −4.33275 16.8928i −0.167389 0.652626i
\(671\) 5.35559i 0.206750i
\(672\) 0 0
\(673\) −27.7823 + 27.7823i −1.07093 + 1.07093i −0.0736433 + 0.997285i \(0.523463\pi\)
−0.997285 + 0.0736433i \(0.976537\pi\)
\(674\) 25.7626 1.52211i 0.992339 0.0586294i
\(675\) 61.2390 7.52828i 2.35709 0.289764i
\(676\) 0.472817 0.0560656i 0.0181853 0.00215637i
\(677\) 17.0379 4.56530i 0.654821 0.175459i 0.0839136 0.996473i \(-0.473258\pi\)
0.570908 + 0.821014i \(0.306591\pi\)
\(678\) −2.51292 0.516687i −0.0965082 0.0198433i
\(679\) 0 0
\(680\) 2.44573 + 6.32254i 0.0937896 + 0.242458i
\(681\) 7.89032 13.6664i 0.302358 0.523699i
\(682\) 4.56521 + 13.7386i 0.174811 + 0.526076i
\(683\) 1.40860 5.25698i 0.0538987 0.201153i −0.933726 0.357989i \(-0.883463\pi\)
0.987625 + 0.156836i \(0.0501293\pi\)
\(684\) −10.9001 14.5904i −0.416776 0.557878i
\(685\) −29.9269 20.1828i −1.14345 0.771145i
\(686\) 0 0
\(687\) 22.9783 22.9783i 0.876677 0.876677i
\(688\) 8.56123 + 5.24121i 0.326394 + 0.199819i
\(689\) 25.8941 14.9499i 0.986485 0.569547i
\(690\) −45.1064 + 25.4010i −1.71717 + 0.966999i
\(691\) −32.0466 18.5021i −1.21911 0.703854i −0.254384 0.967103i \(-0.581873\pi\)
−0.964728 + 0.263249i \(0.915206\pi\)
\(692\) −0.411262 + 0.164180i −0.0156338 + 0.00624120i
\(693\) 0 0
\(694\) −22.3016 + 14.6947i −0.846559 + 0.557805i
\(695\) 6.62785 19.2532i 0.251409 0.730317i
\(696\) −25.8964 30.7055i −0.981601 1.16389i
\(697\) −3.13983 + 11.7180i −0.118930 + 0.443851i
\(698\) 24.2385 + 21.5342i 0.917442 + 0.815081i
\(699\) −40.2324 −1.52173
\(700\) 0 0
\(701\) −29.4765 −1.11331 −0.556656 0.830743i \(-0.687916\pi\)
−0.556656 + 0.830743i \(0.687916\pi\)
\(702\) 46.6065 + 41.4065i 1.75905 + 1.56279i
\(703\) −2.57277 + 9.60170i −0.0970338 + 0.362135i
\(704\) −24.4645 20.3200i −0.922041 0.765838i
\(705\) −15.6713 + 45.5236i −0.590216 + 1.71452i
\(706\) 35.3348 23.2824i 1.32984 0.876244i
\(707\) 0 0
\(708\) 19.4884 + 48.8172i 0.732419 + 1.83466i
\(709\) 15.6918 + 9.05966i 0.589318 + 0.340243i 0.764828 0.644235i \(-0.222824\pi\)
−0.175510 + 0.984478i \(0.556157\pi\)
\(710\) −9.57038 + 5.38942i −0.359170 + 0.202261i
\(711\) −20.6788 + 11.9389i −0.775515 + 0.447744i
\(712\) 11.3197 + 24.1172i 0.424225 + 0.903830i
\(713\) 9.46481 9.46481i 0.354460 0.354460i
\(714\) 0 0
\(715\) −26.3277 17.7555i −0.984602 0.664017i
\(716\) −32.6931 + 24.4242i −1.22180 + 0.912773i
\(717\) −15.5894 + 58.1804i −0.582197 + 2.17279i
\(718\) 3.81308 + 11.4751i 0.142303 + 0.428247i
\(719\) −4.66449 + 8.07913i −0.173956 + 0.301301i −0.939799 0.341726i \(-0.888988\pi\)
0.765843 + 0.643027i \(0.222322\pi\)
\(720\) 35.9078 50.3949i 1.33820 1.87811i
\(721\) 0 0
\(722\) −23.9195 4.91814i −0.890193 0.183034i
\(723\) 43.0696 11.5405i 1.60178 0.429195i
\(724\) −3.10155 26.1562i −0.115268 0.972088i
\(725\) −13.8786 + 17.7691i −0.515438 + 0.659929i
\(726\) 21.3561 1.26176i 0.792598 0.0468283i
\(727\) 11.9373 11.9373i 0.442729 0.442729i −0.450199 0.892928i \(-0.648647\pi\)
0.892928 + 0.450199i \(0.148647\pi\)
\(728\) 0 0
\(729\) 8.68729i 0.321751i
\(730\) 1.89692 + 7.39584i 0.0702082 + 0.273732i
\(731\) 2.32952 1.34495i 0.0861605 0.0497448i
\(732\) −5.25192 + 6.66501i −0.194117 + 0.246346i
\(733\) −11.7409 43.8178i −0.433662 1.61845i −0.744249 0.667903i \(-0.767192\pi\)
0.310587 0.950545i \(-0.399474\pi\)
\(734\) −6.19490 + 4.08187i −0.228658 + 0.150665i
\(735\) 0 0
\(736\) −6.66142 + 28.6396i −0.245543 + 1.05567i
\(737\) 21.1765 5.67423i 0.780047 0.209013i
\(738\) 105.085 34.9187i 3.86822 1.28538i
\(739\) 11.9877 + 20.7633i 0.440975 + 0.763792i 0.997762 0.0668636i \(-0.0212992\pi\)
−0.556787 + 0.830656i \(0.687966\pi\)
\(740\) −33.7345 + 1.63019i −1.24010 + 0.0599271i
\(741\) −14.8087 −0.544009
\(742\) 0 0
\(743\) 26.3785 + 26.3785i 0.967733 + 0.967733i 0.999495 0.0317628i \(-0.0101121\pi\)
−0.0317628 + 0.999495i \(0.510112\pi\)
\(744\) −7.79123 + 21.5744i −0.285640 + 0.790956i
\(745\) −3.33145 + 2.89642i −0.122055 + 0.106116i
\(746\) 3.90459 + 1.95687i 0.142957 + 0.0716463i
\(747\) 21.2141 + 79.1721i 0.776184 + 2.89676i
\(748\) −7.91472 + 3.15964i −0.289391 + 0.115528i
\(749\) 0 0
\(750\) −45.6284 19.9405i −1.66611 0.728123i
\(751\) −45.3197 26.1653i −1.65374 0.954786i −0.975516 0.219930i \(-0.929417\pi\)
−0.678223 0.734857i \(-0.737249\pi\)
\(752\) 13.0594 + 24.0275i 0.476226 + 0.876192i
\(753\) 26.4933 + 7.09885i 0.965468 + 0.258696i
\(754\) −22.7421 + 1.34365i −0.828219 + 0.0489329i
\(755\) 3.68346 + 18.9424i 0.134055 + 0.689383i
\(756\) 0 0
\(757\) 23.8139 + 23.8139i 0.865530 + 0.865530i 0.991974 0.126444i \(-0.0403563\pi\)
−0.126444 + 0.991974i \(0.540356\pi\)
\(758\) −15.9743 + 17.9804i −0.580212 + 0.653078i
\(759\) −32.5383 56.3581i −1.18107 2.04567i
\(760\) 0.891529 + 8.27683i 0.0323391 + 0.300232i
\(761\) −9.43544 + 16.3427i −0.342034 + 0.592421i −0.984810 0.173633i \(-0.944449\pi\)
0.642776 + 0.766054i \(0.277783\pi\)
\(762\) −64.0134 13.1619i −2.31896 0.476807i
\(763\) 0 0
\(764\) −9.55054 + 22.2428i −0.345526 + 0.804716i
\(765\) −7.26997 14.9029i −0.262846 0.538815i
\(766\) 17.2704 34.4599i 0.624004 1.24509i
\(767\) 28.7964 + 7.71597i 1.03978 + 0.278607i
\(768\) −10.5193 49.2791i −0.379583 1.77821i
\(769\) 12.2463i 0.441614i 0.975318 + 0.220807i \(0.0708691\pi\)
−0.975318 + 0.220807i \(0.929131\pi\)
\(770\) 0 0
\(771\) 18.8008i 0.677093i
\(772\) −0.201194 + 1.38974i −0.00724113 + 0.0500177i
\(773\) −4.15790 1.11411i −0.149549 0.0400716i 0.183268 0.983063i \(-0.441332\pi\)
−0.332817 + 0.942991i \(0.607999\pi\)
\(774\) −21.9508 11.0011i −0.789004 0.395427i
\(775\) 12.7505 + 1.79006i 0.458011 + 0.0643010i
\(776\) −6.37133 35.6113i −0.228718 1.27837i
\(777\) 0 0
\(778\) −3.60213 + 17.5191i −0.129143 + 0.628089i
\(779\) −7.44864 + 12.9014i −0.266875 + 0.462242i
\(780\) −15.3529 47.9147i −0.549724 1.71562i
\(781\) −6.90378 11.9577i −0.247037 0.427880i
\(782\) 5.89043 + 5.23322i 0.210641 + 0.187140i
\(783\) 39.3473 + 39.3473i 1.40616 + 1.40616i
\(784\) 0 0
\(785\) 29.3905 + 19.8210i 1.04899 + 0.707443i
\(786\) 2.59005 + 43.8382i 0.0923841 + 1.56366i
\(787\) 4.08160 + 1.09366i 0.145493 + 0.0389848i 0.330831 0.943690i \(-0.392671\pi\)
−0.185337 + 0.982675i \(0.559338\pi\)
\(788\) −2.04685 + 2.59758i −0.0729161 + 0.0925350i
\(789\) 43.1030 + 24.8855i 1.53451 + 0.885948i
\(790\) 10.9137 + 0.117072i 0.388291 + 0.00416525i
\(791\) 0 0
\(792\) 63.8327 + 44.4581i 2.26820 + 1.57975i
\(793\) 1.24563 + 4.64874i 0.0442334 + 0.165081i
\(794\) 7.68650 15.3370i 0.272784 0.544290i
\(795\) 38.6718 + 44.4802i 1.37155 + 1.57755i
\(796\) 27.9615 20.8893i 0.991067 0.740400i
\(797\) 35.3989 + 35.3989i 1.25389 + 1.25389i 0.953960 + 0.299933i \(0.0969644\pi\)
0.299933 + 0.953960i \(0.403036\pi\)
\(798\) 0 0
\(799\) 7.32815 0.259251
\(800\) −25.8561 + 11.4657i −0.914152 + 0.405372i
\(801\) −32.5825 56.4346i −1.15125 1.99402i
\(802\) 6.35788 + 19.1334i 0.224505 + 0.675625i
\(803\) −9.27129 + 2.48424i −0.327177 + 0.0876668i
\(804\) 31.9185 + 13.7050i 1.12568 + 0.483340i
\(805\) 0 0
\(806\) 7.15804 + 10.8635i 0.252131 + 0.382650i
\(807\) 6.51753 + 24.3238i 0.229428 + 0.856237i
\(808\) 2.45982 28.9518i 0.0865362 1.01852i
\(809\) −25.0379 + 14.4556i −0.880284 + 0.508232i −0.870752 0.491722i \(-0.836368\pi\)
−0.00953207 + 0.999955i \(0.503034\pi\)
\(810\) −29.1613 + 49.2805i −1.02463 + 1.73154i
\(811\) 23.9566i 0.841229i 0.907240 + 0.420614i \(0.138185\pi\)
−0.907240 + 0.420614i \(0.861815\pi\)
\(812\) 0 0
\(813\) 66.9390 66.9390i 2.34765 2.34765i
\(814\) −2.50411 42.3837i −0.0877691 1.48555i
\(815\) 1.08540 15.5382i 0.0380199 0.544281i
\(816\) −12.9483 3.82935i −0.453281 0.134054i
\(817\) 3.19064 0.854928i 0.111626 0.0299102i
\(818\) −8.51612 + 41.4184i −0.297759 + 1.44816i
\(819\) 0 0
\(820\) −49.4661 10.7251i −1.72743 0.374537i
\(821\) −17.8387 + 30.8975i −0.622574 + 1.07833i 0.366430 + 0.930445i \(0.380580\pi\)
−0.989005 + 0.147885i \(0.952754\pi\)
\(822\) 68.2295 22.6721i 2.37978 0.790780i
\(823\) −3.41164 + 12.7324i −0.118922 + 0.443824i −0.999550 0.0299839i \(-0.990454\pi\)
0.880628 + 0.473808i \(0.157121\pi\)
\(824\) 11.1196 + 4.01565i 0.387369 + 0.139892i
\(825\) 24.4507 57.6257i 0.851265 2.00627i
\(826\) 0 0
\(827\) −6.42266 + 6.42266i −0.223338 + 0.223338i −0.809902 0.586565i \(-0.800480\pi\)
0.586565 + 0.809902i \(0.300480\pi\)
\(828\) 10.3048 71.1798i 0.358117 2.47367i
\(829\) −16.2271 + 9.36870i −0.563589 + 0.325388i −0.754585 0.656202i \(-0.772162\pi\)
0.190996 + 0.981591i \(0.438828\pi\)
\(830\) 10.0844 36.0827i 0.350033 1.25245i
\(831\) 6.74002 + 3.89135i 0.233809 + 0.134990i
\(832\) −25.9617 11.9480i −0.900059 0.414223i
\(833\) 0 0
\(834\) 22.3150 + 33.8666i 0.772706 + 1.17271i
\(835\) 16.5275 + 33.8802i 0.571958 + 1.17247i
\(836\) −10.3923 + 1.23230i −0.359425 + 0.0426199i
\(837\) 8.22443 30.6940i 0.284278 1.06094i
\(838\) 35.3644 39.8056i 1.22164 1.37506i
\(839\) 50.3921 1.73973 0.869864 0.493291i \(-0.164206\pi\)
0.869864 + 0.493291i \(0.164206\pi\)
\(840\) 0 0
\(841\) 8.66571 0.298818
\(842\) 7.86338 8.85090i 0.270990 0.305022i
\(843\) −2.32395 + 8.67309i −0.0800410 + 0.298717i
\(844\) 12.5621 1.48958i 0.432404 0.0512735i
\(845\) 0.503339 + 0.173272i 0.0173154 + 0.00596075i
\(846\) −36.8038 55.8557i −1.26534 1.92036i
\(847\) 0 0
\(848\) 33.4678 + 0.861844i 1.14929 + 0.0295958i
\(849\) 23.5989 + 13.6249i 0.809914 + 0.467604i
\(850\) −0.609221 + 7.55474i −0.0208961 + 0.259125i
\(851\) −33.9960 + 19.6276i −1.16537 + 0.672826i
\(852\) 3.13451 21.6514i 0.107386 0.741765i
\(853\) −12.0652 + 12.0652i −0.413104 + 0.413104i −0.882818 0.469714i \(-0.844357\pi\)
0.469714 + 0.882818i \(0.344357\pi\)
\(854\) 0 0
\(855\) −3.88673 19.9877i −0.132923 0.683565i
\(856\) 15.2857 42.3270i 0.522454 1.44671i
\(857\) −5.32241 + 19.8635i −0.181810 + 0.678525i 0.813481 + 0.581592i \(0.197570\pi\)
−0.995291 + 0.0969329i \(0.969097\pi\)
\(858\) 60.0237 19.9454i 2.04918 0.680925i
\(859\) 21.8383 37.8250i 0.745112 1.29057i −0.205030 0.978756i \(-0.565729\pi\)
0.950142 0.311816i \(-0.100937\pi\)
\(860\) 6.07410 + 9.43723i 0.207125 + 0.321807i
\(861\) 0 0
\(862\) 1.41825 6.89769i 0.0483057 0.234936i
\(863\) −24.6545 + 6.60616i −0.839250 + 0.224876i −0.652745 0.757578i \(-0.726383\pi\)
−0.186505 + 0.982454i \(0.559716\pi\)
\(864\) 20.2997 + 66.7888i 0.690611 + 2.27220i
\(865\) −0.493887 0.0344997i −0.0167927 0.00117302i
\(866\) −0.319125 5.40139i −0.0108443 0.183547i
\(867\) 35.2990 35.2990i 1.19882 1.19882i
\(868\) 0 0
\(869\) 13.7205i 0.465437i
\(870\) −11.1573 43.5009i −0.378269 1.47482i
\(871\) 17.0618 9.85064i 0.578117 0.333776i
\(872\) 8.41391 + 0.714869i 0.284931 + 0.0242085i
\(873\) 22.9023 + 85.4726i 0.775126 + 2.89281i
\(874\) 5.32368 + 8.07955i 0.180076 + 0.273295i
\(875\) 0 0
\(876\) −13.9742 6.00021i −0.472145 0.202728i
\(877\) −49.9561 + 13.3857i −1.68690 + 0.452002i −0.969586 0.244751i \(-0.921294\pi\)
−0.717310 + 0.696754i \(0.754627\pi\)
\(878\) 16.7391 + 50.3746i 0.564916 + 1.70006i
\(879\) −36.8034 63.7454i −1.24135 2.15008i
\(880\) −14.7615 32.3476i −0.497609 1.09044i
\(881\) 29.9298 1.00836 0.504181 0.863598i \(-0.331795\pi\)
0.504181 + 0.863598i \(0.331795\pi\)
\(882\) 0 0
\(883\) −22.0057 22.0057i −0.740550 0.740550i 0.232134 0.972684i \(-0.425429\pi\)
−0.972684 + 0.232134i \(0.925429\pi\)
\(884\) −6.13521 + 4.58346i −0.206350 + 0.154158i
\(885\) −4.09515 + 58.6249i −0.137657 + 1.97065i
\(886\) 8.04170 16.0458i 0.270166 0.539068i
\(887\) 12.4757 + 46.5601i 0.418894 + 1.56333i 0.776905 + 0.629618i \(0.216788\pi\)
−0.358011 + 0.933717i \(0.616545\pi\)
\(888\) 38.4469 55.2019i 1.29019 1.85245i
\(889\) 0 0
\(890\) −0.319503 + 29.7845i −0.0107098 + 0.998380i
\(891\) −62.3408 35.9925i −2.08850 1.20579i
\(892\) −1.98567 + 2.51993i −0.0664851 + 0.0843736i
\(893\) 8.69230 + 2.32910i 0.290877 + 0.0779402i
\(894\) −0.518595 8.77755i −0.0173444 0.293565i
\(895\) −44.7870 + 8.70910i −1.49706 + 0.291113i
\(896\) 0 0
\(897\) −41.3518 41.3518i −1.38070 1.38070i
\(898\) 26.6041 + 23.6359i 0.887792 + 0.788739i
\(899\) 5.80603 + 10.0563i 0.193642 + 0.335398i
\(900\) 60.6424 33.2982i 2.02141 1.10994i
\(901\) 4.48563 7.76933i 0.149438 0.258834i
\(902\) 12.8149 62.3256i 0.426689 2.07522i
\(903\) 0 0
\(904\) −1.60376 + 0.286935i −0.0533404 + 0.00954330i
\(905\) 9.58543 27.8447i 0.318630 0.925589i
\(906\) −34.3624 17.2215i −1.14161 0.572145i
\(907\) 7.78619 + 2.08630i 0.258536 + 0.0692745i 0.385759 0.922600i \(-0.373940\pi\)
−0.127223 + 0.991874i \(0.540606\pi\)
\(908\) 1.43587 9.91819i 0.0476510 0.329147i
\(909\) 71.0708i 2.35727i
\(910\) 0 0
\(911\) 15.9014i 0.526836i −0.964682 0.263418i \(-0.915150\pi\)
0.964682 0.263418i \(-0.0848498\pi\)
\(912\) −14.1416 8.65754i −0.468275 0.286680i
\(913\) 45.4934 + 12.1899i 1.50561 + 0.403427i
\(914\) 17.2344 34.3882i 0.570065 1.13746i
\(915\) −8.52670 + 4.15952i −0.281884 + 0.137509i
\(916\) 8.14218 18.9628i 0.269025 0.626548i
\(917\) 0 0
\(918\) 18.3223 + 3.76729i 0.604727 + 0.124339i
\(919\) −22.6796 + 39.2823i −0.748132 + 1.29580i 0.200585 + 0.979676i \(0.435716\pi\)
−0.948717 + 0.316127i \(0.897618\pi\)
\(920\) −20.6228 + 25.6018i −0.679912 + 0.844065i
\(921\) −33.4614 57.9569i −1.10259 1.90975i
\(922\) −18.7905 + 21.1503i −0.618833 + 0.696548i
\(923\) −8.77375 8.77375i −0.288792 0.288792i
\(924\) 0 0
\(925\) −34.7607 14.7490i −1.14292 0.484946i
\(926\) −20.2677 + 1.19746i −0.666038 + 0.0393508i
\(927\) −27.9322 7.48442i −0.917415 0.245821i
\(928\) −22.5032 12.0125i −0.738705 0.394331i
\(929\) 33.4187 + 19.2943i 1.09643 + 0.633025i 0.935281 0.353905i \(-0.115146\pi\)
0.161150 + 0.986930i \(0.448480\pi\)
\(930\) −18.3277 + 17.9386i −0.600988 + 0.588231i
\(931\) 0 0
\(932\) −23.7289 + 9.47283i −0.777265 + 0.310293i
\(933\) −22.9641 85.7032i −0.751811 2.80580i
\(934\) 5.22689 + 2.61957i 0.171029 + 0.0857151i
\(935\) −9.50483 0.663945i −0.310841 0.0217133i
\(936\) 65.7480 + 23.7438i 2.14904 + 0.776090i
\(937\) −15.2293 15.2293i −0.497519 0.497519i 0.413146 0.910665i \(-0.364430\pi\)
−0.910665 + 0.413146i \(0.864430\pi\)
\(938\) 0 0
\(939\) −80.8383 −2.63806
\(940\) 1.47579 + 30.5394i 0.0481351 + 0.996086i
\(941\) −23.7077 41.0629i −0.772848 1.33861i −0.935996 0.352010i \(-0.885498\pi\)
0.163148 0.986602i \(-0.447835\pi\)
\(942\) −67.0065 + 22.2657i −2.18319 + 0.725456i
\(943\) −56.8256 + 15.2264i −1.85050 + 0.495839i
\(944\) 22.9883 + 24.2035i 0.748205 + 0.787758i
\(945\) 0 0
\(946\) −11.7811 + 7.76266i −0.383036 + 0.252386i
\(947\) 9.12616 + 34.0593i 0.296560 + 1.10678i 0.939970 + 0.341257i \(0.110853\pi\)
−0.643410 + 0.765522i \(0.722481\pi\)
\(948\) −13.4549 + 17.0751i −0.436996 + 0.554574i
\(949\) −7.46983 + 4.31271i −0.242481 + 0.139996i
\(950\) −3.12374 + 8.76745i −0.101348 + 0.284454i
\(951\) 82.8346i 2.68610i
\(952\) 0 0
\(953\) 34.4409 34.4409i 1.11565 1.11565i 0.123279 0.992372i \(-0.460659\pi\)
0.992372 0.123279i \(-0.0393409\pi\)
\(954\) −81.7464 + 4.82974i −2.64664 + 0.156369i
\(955\) −20.4239 + 17.7569i −0.660903 + 0.574599i
\(956\) 4.50419 + 37.9850i 0.145676 + 1.22852i
\(957\) 54.5320 14.6118i 1.76277 0.472332i
\(958\) −12.9228 2.65709i −0.417518 0.0858467i
\(959\) 0 0
\(960\) 13.3509 54.7321i 0.430897 1.76647i
\(961\) −12.1844 + 21.1040i −0.393046 + 0.680775i
\(962\) −12.0314 36.2072i −0.387907 1.16737i
\(963\) −28.4896 + 106.325i −0.918065 + 3.42627i
\(964\) 22.6850 16.9474i 0.730634 0.545838i
\(965\) −0.877821 + 1.30163i −0.0282581 + 0.0419009i
\(966\) 0 0
\(967\) 28.3737 28.3737i 0.912437 0.912437i −0.0840261 0.996464i \(-0.526778\pi\)
0.996464 + 0.0840261i \(0.0267779\pi\)
\(968\) 12.2986 5.77252i 0.395292 0.185536i
\(969\) −3.84795 + 2.22162i −0.123614 + 0.0713686i
\(970\) 10.8869 38.9541i 0.349556 1.25074i
\(971\) −6.28643 3.62947i −0.201741 0.116475i 0.395726 0.918369i \(-0.370493\pi\)
−0.597467 + 0.801893i \(0.703826\pi\)
\(972\) −14.8361 37.1635i −0.475867 1.19202i
\(973\) 0 0
\(974\) 34.2406 22.5614i 1.09714 0.722913i
\(975\) 7.82079 55.7068i 0.250466 1.78405i
\(976\) −1.52826 + 5.16756i −0.0489184 + 0.165410i
\(977\) 3.08533 11.5146i 0.0987084 0.368385i −0.898847 0.438262i \(-0.855594\pi\)
0.997556 + 0.0698774i \(0.0222608\pi\)
\(978\) 23.1934 + 20.6057i 0.741644 + 0.658897i
\(979\) −37.4447 −1.19674
\(980\) 0 0
\(981\) −20.6545 −0.659446
\(982\) 29.7949 + 26.4706i 0.950794 + 0.844712i
\(983\) 4.89406 18.2649i 0.156096 0.582560i −0.842913 0.538050i \(-0.819161\pi\)
0.999009 0.0445091i \(-0.0141724\pi\)
\(984\) 77.0672 64.9970i 2.45681 2.07203i
\(985\) −3.32315 + 1.62111i −0.105884 + 0.0516528i
\(986\) −5.70785 + 3.76095i −0.181775 + 0.119773i
\(987\) 0 0
\(988\) −8.73406 + 3.48673i −0.277867 + 0.110928i
\(989\) 11.2969 + 6.52224i 0.359219 + 0.207395i
\(990\) 42.6750 + 75.7810i 1.35630 + 2.40848i
\(991\) 19.1208 11.0394i 0.607392 0.350678i −0.164552 0.986368i \(-0.552618\pi\)
0.771944 + 0.635690i \(0.219284\pi\)
\(992\) 0.484520 + 14.5589i 0.0153835 + 0.462246i
\(993\) −38.3078 + 38.3078i −1.21566 + 1.21566i
\(994\) 0 0
\(995\) 38.3050 7.44864i 1.21435 0.236138i
\(996\) 44.6623 + 59.7830i 1.41518 + 1.89430i
\(997\) −7.72606 + 28.8340i −0.244687 + 0.913183i 0.728854 + 0.684669i \(0.240053\pi\)
−0.973541 + 0.228514i \(0.926613\pi\)
\(998\) 13.8574 + 41.7025i 0.438648 + 1.32007i
\(999\) −46.5962 + 80.7070i −1.47424 + 2.55346i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.j.667.4 64
4.3 odd 2 inner 980.2.x.j.667.1 64
5.3 odd 4 inner 980.2.x.j.863.14 64
7.2 even 3 980.2.k.i.687.16 yes 32
7.3 odd 6 inner 980.2.x.j.67.8 64
7.4 even 3 inner 980.2.x.j.67.7 64
7.5 odd 6 980.2.k.i.687.15 yes 32
7.6 odd 2 inner 980.2.x.j.667.3 64
20.3 even 4 inner 980.2.x.j.863.7 64
28.3 even 6 inner 980.2.x.j.67.13 64
28.11 odd 6 inner 980.2.x.j.67.14 64
28.19 even 6 980.2.k.i.687.12 yes 32
28.23 odd 6 980.2.k.i.687.11 32
28.27 even 2 inner 980.2.x.j.667.2 64
35.3 even 12 inner 980.2.x.j.263.2 64
35.13 even 4 inner 980.2.x.j.863.13 64
35.18 odd 12 inner 980.2.x.j.263.1 64
35.23 odd 12 980.2.k.i.883.11 yes 32
35.33 even 12 980.2.k.i.883.12 yes 32
140.3 odd 12 inner 980.2.x.j.263.3 64
140.23 even 12 980.2.k.i.883.16 yes 32
140.83 odd 4 inner 980.2.x.j.863.8 64
140.103 odd 12 980.2.k.i.883.15 yes 32
140.123 even 12 inner 980.2.x.j.263.4 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.k.i.687.11 32 28.23 odd 6
980.2.k.i.687.12 yes 32 28.19 even 6
980.2.k.i.687.15 yes 32 7.5 odd 6
980.2.k.i.687.16 yes 32 7.2 even 3
980.2.k.i.883.11 yes 32 35.23 odd 12
980.2.k.i.883.12 yes 32 35.33 even 12
980.2.k.i.883.15 yes 32 140.103 odd 12
980.2.k.i.883.16 yes 32 140.23 even 12
980.2.x.j.67.7 64 7.4 even 3 inner
980.2.x.j.67.8 64 7.3 odd 6 inner
980.2.x.j.67.13 64 28.3 even 6 inner
980.2.x.j.67.14 64 28.11 odd 6 inner
980.2.x.j.263.1 64 35.18 odd 12 inner
980.2.x.j.263.2 64 35.3 even 12 inner
980.2.x.j.263.3 64 140.3 odd 12 inner
980.2.x.j.263.4 64 140.123 even 12 inner
980.2.x.j.667.1 64 4.3 odd 2 inner
980.2.x.j.667.2 64 28.27 even 2 inner
980.2.x.j.667.3 64 7.6 odd 2 inner
980.2.x.j.667.4 64 1.1 even 1 trivial
980.2.x.j.863.7 64 20.3 even 4 inner
980.2.x.j.863.8 64 140.83 odd 4 inner
980.2.x.j.863.13 64 35.13 even 4 inner
980.2.x.j.863.14 64 5.3 odd 4 inner