Properties

Label 980.2.k.i.687.11
Level $980$
Weight $2$
Character 980.687
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(687,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.687"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 687.11
Character \(\chi\) \(=\) 980.687
Dual form 980.2.k.i.883.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.284821 + 1.38524i) q^{2} +(-2.22691 - 2.22691i) q^{3} +(-1.83775 + 0.789089i) q^{4} +(-2.19495 + 0.426822i) q^{5} +(2.45053 - 3.71907i) q^{6} +(-1.61650 - 2.32097i) q^{8} +6.91829i q^{9} +(-1.21642 - 2.91896i) q^{10} +3.97534i q^{11} +(5.84975 + 2.33529i) q^{12} +(-2.52606 + 2.52606i) q^{13} +(5.83847 + 3.93748i) q^{15} +(2.75468 - 2.90030i) q^{16} +(-0.757926 - 0.757926i) q^{17} +(-9.58346 + 1.97048i) q^{18} -1.31625 q^{19} +(3.69698 - 2.51641i) q^{20} +(-5.50679 + 1.13226i) q^{22} +(-3.67551 - 3.67551i) q^{23} +(-1.56879 + 8.76842i) q^{24} +(4.63565 - 1.87371i) q^{25} +(-4.21866 - 2.77971i) q^{26} +(8.72570 - 8.72570i) q^{27} -4.50936i q^{29} +(-3.79141 + 9.20913i) q^{30} +2.57510i q^{31} +(4.80219 + 2.98981i) q^{32} +(8.85275 - 8.85275i) q^{33} +(0.834032 - 1.26578i) q^{34} +(-5.45915 - 12.7141i) q^{36} +(-5.34011 - 5.34011i) q^{37} +(-0.374896 - 1.82332i) q^{38} +11.2506 q^{39} +(4.53880 + 4.40447i) q^{40} +11.3180 q^{41} +(1.77452 + 1.77452i) q^{43} +(-3.13690 - 7.30570i) q^{44} +(-2.95288 - 15.1853i) q^{45} +(4.04458 - 6.13831i) q^{46} +(4.83434 - 4.83434i) q^{47} +(-12.5932 + 0.324292i) q^{48} +(3.91586 + 5.88779i) q^{50} +3.37567i q^{51} +(2.64899 - 6.63556i) q^{52} +(5.91829 - 5.91829i) q^{53} +(14.5724 + 9.60188i) q^{54} +(-1.69676 - 8.72570i) q^{55} +(2.93118 + 2.93118i) q^{57} +(6.24652 - 1.28436i) q^{58} -8.34518 q^{59} +(-13.8367 - 2.62904i) q^{60} -1.34720 q^{61} +(-3.56712 + 0.733444i) q^{62} +(-2.77382 + 7.50373i) q^{64} +(4.46640 - 6.62276i) q^{65} +(14.7846 + 9.74169i) q^{66} +(-3.89961 + 3.89961i) q^{67} +(1.99095 + 0.794810i) q^{68} +16.3701i q^{69} -3.47330i q^{71} +(16.0572 - 11.1835i) q^{72} +(-1.70729 + 1.70729i) q^{73} +(5.87634 - 8.91829i) q^{74} +(-14.4958 - 6.15059i) q^{75} +(2.41895 - 1.03864i) q^{76} +(3.20442 + 15.5848i) q^{78} +3.45140 q^{79} +(-4.80848 + 7.54179i) q^{80} -18.1079 q^{81} +(3.22360 + 15.6780i) q^{82} +(8.37751 + 8.37751i) q^{83} +(1.98711 + 1.34011i) q^{85} +(-1.95270 + 2.96354i) q^{86} +(-10.0419 + 10.0419i) q^{87} +(9.22666 - 6.42616i) q^{88} -9.41924i q^{89} +(20.1942 - 8.41554i) q^{90} +(9.65498 + 3.85438i) q^{92} +(5.73453 - 5.73453i) q^{93} +(8.07362 + 5.31978i) q^{94} +(2.88911 - 0.561805i) q^{95} +(-4.03602 - 17.3521i) q^{96} +(-9.04418 - 9.04418i) q^{97} -27.5026 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{2} + 8 q^{8} + 8 q^{16} - 40 q^{18} - 36 q^{22} + 32 q^{25} - 36 q^{30} + 16 q^{32} - 88 q^{36} - 48 q^{37} + 28 q^{50} + 16 q^{53} - 16 q^{57} + 36 q^{58} - 80 q^{60} + 64 q^{65} + 56 q^{72}+ \cdots + 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.284821 + 1.38524i 0.201399 + 0.979509i
\(3\) −2.22691 2.22691i −1.28571 1.28571i −0.937368 0.348342i \(-0.886745\pi\)
−0.348342 0.937368i \(-0.613255\pi\)
\(4\) −1.83775 + 0.789089i −0.918877 + 0.394544i
\(5\) −2.19495 + 0.426822i −0.981613 + 0.190881i
\(6\) 2.45053 3.71907i 1.00042 1.51830i
\(7\) 0 0
\(8\) −1.61650 2.32097i −0.571521 0.820588i
\(9\) 6.91829i 2.30610i
\(10\) −1.21642 2.91896i −0.384665 0.923056i
\(11\) 3.97534i 1.19861i 0.800520 + 0.599306i \(0.204557\pi\)
−0.800520 + 0.599306i \(0.795443\pi\)
\(12\) 5.84975 + 2.33529i 1.68868 + 0.674139i
\(13\) −2.52606 + 2.52606i −0.700602 + 0.700602i −0.964540 0.263937i \(-0.914979\pi\)
0.263937 + 0.964540i \(0.414979\pi\)
\(14\) 0 0
\(15\) 5.83847 + 3.93748i 1.50749 + 1.01665i
\(16\) 2.75468 2.90030i 0.688669 0.725075i
\(17\) −0.757926 0.757926i −0.183824 0.183824i 0.609196 0.793020i \(-0.291492\pi\)
−0.793020 + 0.609196i \(0.791492\pi\)
\(18\) −9.58346 + 1.97048i −2.25884 + 0.464446i
\(19\) −1.31625 −0.301969 −0.150984 0.988536i \(-0.548244\pi\)
−0.150984 + 0.988536i \(0.548244\pi\)
\(20\) 3.69698 2.51641i 0.826671 0.562686i
\(21\) 0 0
\(22\) −5.50679 + 1.13226i −1.17405 + 0.241399i
\(23\) −3.67551 3.67551i −0.766396 0.766396i 0.211074 0.977470i \(-0.432304\pi\)
−0.977470 + 0.211074i \(0.932304\pi\)
\(24\) −1.56879 + 8.76842i −0.320228 + 1.78985i
\(25\) 4.63565 1.87371i 0.927129 0.374742i
\(26\) −4.21866 2.77971i −0.827347 0.545146i
\(27\) 8.72570 8.72570i 1.67926 1.67926i
\(28\) 0 0
\(29\) 4.50936i 0.837366i −0.908132 0.418683i \(-0.862492\pi\)
0.908132 0.418683i \(-0.137508\pi\)
\(30\) −3.79141 + 9.20913i −0.692214 + 1.68135i
\(31\) 2.57510i 0.462502i 0.972894 + 0.231251i \(0.0742819\pi\)
−0.972894 + 0.231251i \(0.925718\pi\)
\(32\) 4.80219 + 2.98981i 0.848915 + 0.528529i
\(33\) 8.85275 8.85275i 1.54107 1.54107i
\(34\) 0.834032 1.26578i 0.143035 0.217079i
\(35\) 0 0
\(36\) −5.45915 12.7141i −0.909858 2.11902i
\(37\) −5.34011 5.34011i −0.877909 0.877909i 0.115409 0.993318i \(-0.463182\pi\)
−0.993318 + 0.115409i \(0.963182\pi\)
\(38\) −0.374896 1.82332i −0.0608162 0.295781i
\(39\) 11.2506 1.80154
\(40\) 4.53880 + 4.40447i 0.717647 + 0.696407i
\(41\) 11.3180 1.76757 0.883784 0.467894i \(-0.154987\pi\)
0.883784 + 0.467894i \(0.154987\pi\)
\(42\) 0 0
\(43\) 1.77452 + 1.77452i 0.270611 + 0.270611i 0.829346 0.558735i \(-0.188713\pi\)
−0.558735 + 0.829346i \(0.688713\pi\)
\(44\) −3.13690 7.30570i −0.472905 1.10138i
\(45\) −2.95288 15.1853i −0.440189 2.26370i
\(46\) 4.04458 6.13831i 0.596341 0.905044i
\(47\) 4.83434 4.83434i 0.705161 0.705161i −0.260353 0.965514i \(-0.583839\pi\)
0.965514 + 0.260353i \(0.0838388\pi\)
\(48\) −12.5932 + 0.324292i −1.81766 + 0.0468075i
\(49\) 0 0
\(50\) 3.91586 + 5.88779i 0.553786 + 0.832659i
\(51\) 3.37567i 0.472689i
\(52\) 2.64899 6.63556i 0.367349 0.920186i
\(53\) 5.91829 5.91829i 0.812940 0.812940i −0.172134 0.985074i \(-0.555066\pi\)
0.985074 + 0.172134i \(0.0550662\pi\)
\(54\) 14.5724 + 9.60188i 1.98305 + 1.30665i
\(55\) −1.69676 8.72570i −0.228792 1.17657i
\(56\) 0 0
\(57\) 2.93118 + 2.93118i 0.388244 + 0.388244i
\(58\) 6.24652 1.28436i 0.820208 0.168645i
\(59\) −8.34518 −1.08645 −0.543225 0.839587i \(-0.682797\pi\)
−0.543225 + 0.839587i \(0.682797\pi\)
\(60\) −13.8367 2.62904i −1.78631 0.339408i
\(61\) −1.34720 −0.172492 −0.0862458 0.996274i \(-0.527487\pi\)
−0.0862458 + 0.996274i \(0.527487\pi\)
\(62\) −3.56712 + 0.733444i −0.453025 + 0.0931475i
\(63\) 0 0
\(64\) −2.77382 + 7.50373i −0.346728 + 0.937966i
\(65\) 4.46640 6.62276i 0.553989 0.821452i
\(66\) 14.7846 + 9.74169i 1.81986 + 1.19912i
\(67\) −3.89961 + 3.89961i −0.476413 + 0.476413i −0.903983 0.427569i \(-0.859370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(68\) 1.99095 + 0.794810i 0.241438 + 0.0963849i
\(69\) 16.3701i 1.97073i
\(70\) 0 0
\(71\) 3.47330i 0.412205i −0.978530 0.206102i \(-0.933922\pi\)
0.978530 0.206102i \(-0.0660780\pi\)
\(72\) 16.0572 11.1835i 1.89235 1.31798i
\(73\) −1.70729 + 1.70729i −0.199823 + 0.199823i −0.799924 0.600101i \(-0.795127\pi\)
0.600101 + 0.799924i \(0.295127\pi\)
\(74\) 5.87634 8.91829i 0.683110 1.03673i
\(75\) −14.4958 6.15059i −1.67383 0.710209i
\(76\) 2.41895 1.03864i 0.277472 0.119140i
\(77\) 0 0
\(78\) 3.20442 + 15.5848i 0.362829 + 1.76463i
\(79\) 3.45140 0.388313 0.194157 0.980971i \(-0.437803\pi\)
0.194157 + 0.980971i \(0.437803\pi\)
\(80\) −4.80848 + 7.54179i −0.537604 + 0.843197i
\(81\) −18.1079 −2.01199
\(82\) 3.22360 + 15.6780i 0.355987 + 1.73135i
\(83\) 8.37751 + 8.37751i 0.919551 + 0.919551i 0.996997 0.0774458i \(-0.0246765\pi\)
−0.0774458 + 0.996997i \(0.524676\pi\)
\(84\) 0 0
\(85\) 1.98711 + 1.34011i 0.215533 + 0.145356i
\(86\) −1.95270 + 2.96354i −0.210565 + 0.319567i
\(87\) −10.0419 + 10.0419i −1.07661 + 1.07661i
\(88\) 9.22666 6.42616i 0.983565 0.685031i
\(89\) 9.41924i 0.998437i −0.866476 0.499219i \(-0.833620\pi\)
0.866476 0.499219i \(-0.166380\pi\)
\(90\) 20.1942 8.41554i 2.12866 0.887076i
\(91\) 0 0
\(92\) 9.65498 + 3.85438i 1.00660 + 0.401846i
\(93\) 5.73453 5.73453i 0.594643 0.594643i
\(94\) 8.07362 + 5.31978i 0.832731 + 0.548693i
\(95\) 2.88911 0.561805i 0.296417 0.0576400i
\(96\) −4.03602 17.3521i −0.411924 1.77099i
\(97\) −9.04418 9.04418i −0.918298 0.918298i 0.0786079 0.996906i \(-0.474952\pi\)
−0.996906 + 0.0786079i \(0.974952\pi\)
\(98\) 0 0
\(99\) −27.5026 −2.76411
\(100\) −7.04065 + 7.10135i −0.704065 + 0.710135i
\(101\) 10.2729 1.02219 0.511095 0.859524i \(-0.329240\pi\)
0.511095 + 0.859524i \(0.329240\pi\)
\(102\) −4.67610 + 0.961463i −0.463003 + 0.0951990i
\(103\) 2.95562 + 2.95562i 0.291226 + 0.291226i 0.837564 0.546339i \(-0.183979\pi\)
−0.546339 + 0.837564i \(0.683979\pi\)
\(104\) 9.94629 + 1.77953i 0.975314 + 0.174497i
\(105\) 0 0
\(106\) 9.88388 + 6.51257i 0.960007 + 0.632557i
\(107\) 11.2506 11.2506i 1.08764 1.08764i 0.0918679 0.995771i \(-0.470716\pi\)
0.995771 0.0918679i \(-0.0292837\pi\)
\(108\) −9.15033 + 22.9210i −0.880491 + 2.20558i
\(109\) 2.98548i 0.285958i 0.989726 + 0.142979i \(0.0456681\pi\)
−0.989726 + 0.142979i \(0.954332\pi\)
\(110\) 11.6039 4.83568i 1.10639 0.461064i
\(111\) 23.7839i 2.25747i
\(112\) 0 0
\(113\) −0.407307 + 0.407307i −0.0383162 + 0.0383162i −0.726005 0.687689i \(-0.758625\pi\)
0.687689 + 0.726005i \(0.258625\pi\)
\(114\) −3.22551 + 4.89523i −0.302097 + 0.458481i
\(115\) 9.63636 + 6.49878i 0.898595 + 0.606015i
\(116\) 3.55828 + 8.28709i 0.330378 + 0.769437i
\(117\) −17.4760 17.4760i −1.61566 1.61566i
\(118\) −2.37688 11.5600i −0.218810 1.06419i
\(119\) 0 0
\(120\) −0.299139 19.9159i −0.0273076 1.81806i
\(121\) −4.80335 −0.436669
\(122\) −0.383712 1.86619i −0.0347396 0.168957i
\(123\) −25.2041 25.2041i −2.27258 2.27258i
\(124\) −2.03198 4.73241i −0.182478 0.424983i
\(125\) −9.37529 + 6.09130i −0.838551 + 0.544823i
\(126\) 0 0
\(127\) 10.3756 10.3756i 0.920687 0.920687i −0.0763907 0.997078i \(-0.524340\pi\)
0.997078 + 0.0763907i \(0.0243396\pi\)
\(128\) −11.1845 1.70518i −0.988577 0.150718i
\(129\) 7.90338i 0.695854i
\(130\) 10.4462 + 4.30072i 0.916193 + 0.377198i
\(131\) 9.85999i 0.861471i 0.902478 + 0.430736i \(0.141746\pi\)
−0.902478 + 0.430736i \(0.858254\pi\)
\(132\) −9.28357 + 23.2548i −0.808031 + 2.02407i
\(133\) 0 0
\(134\) −6.51257 4.29119i −0.562600 0.370702i
\(135\) −15.4282 + 22.8768i −1.32785 + 1.96892i
\(136\) −0.533934 + 2.98432i −0.0457845 + 0.255903i
\(137\) 11.4148 + 11.4148i 0.975229 + 0.975229i 0.999701 0.0244719i \(-0.00779042\pi\)
−0.0244719 + 0.999701i \(0.507790\pi\)
\(138\) −22.6764 + 4.66254i −1.93034 + 0.396902i
\(139\) −9.10621 −0.772379 −0.386189 0.922420i \(-0.626209\pi\)
−0.386189 + 0.922420i \(0.626209\pi\)
\(140\) 0 0
\(141\) −21.5313 −1.81326
\(142\) 4.81133 0.989269i 0.403758 0.0830176i
\(143\) −10.0419 10.0419i −0.839750 0.839750i
\(144\) 20.0651 + 19.0577i 1.67209 + 1.58814i
\(145\) 1.92469 + 9.89783i 0.159837 + 0.821970i
\(146\) −2.85127 1.87872i −0.235973 0.155484i
\(147\) 0 0
\(148\) 14.0276 + 5.59999i 1.15306 + 0.460316i
\(149\) 1.97422i 0.161735i 0.996725 + 0.0808674i \(0.0257690\pi\)
−0.996725 + 0.0808674i \(0.974231\pi\)
\(150\) 4.39131 21.8319i 0.358549 1.78257i
\(151\) 8.62995i 0.702296i 0.936320 + 0.351148i \(0.114209\pi\)
−0.936320 + 0.351148i \(0.885791\pi\)
\(152\) 2.12773 + 3.05498i 0.172581 + 0.247792i
\(153\) 5.24355 5.24355i 0.423916 0.423916i
\(154\) 0 0
\(155\) −1.09911 5.65223i −0.0882827 0.453998i
\(156\) −20.6759 + 8.87774i −1.65540 + 0.710788i
\(157\) −11.2102 11.2102i −0.894668 0.894668i 0.100290 0.994958i \(-0.468023\pi\)
−0.994958 + 0.100290i \(0.968023\pi\)
\(158\) 0.983033 + 4.78101i 0.0782059 + 0.380356i
\(159\) −26.3590 −2.09041
\(160\) −11.8167 4.51281i −0.934193 0.356769i
\(161\) 0 0
\(162\) −5.15751 25.0837i −0.405212 1.97076i
\(163\) 4.92560 + 4.92560i 0.385802 + 0.385802i 0.873187 0.487385i \(-0.162049\pi\)
−0.487385 + 0.873187i \(0.662049\pi\)
\(164\) −20.7996 + 8.93088i −1.62418 + 0.697384i
\(165\) −15.6528 + 23.2099i −1.21857 + 1.80689i
\(166\) −9.21873 + 13.9909i −0.715512 + 1.08591i
\(167\) 11.9207 11.9207i 0.922449 0.922449i −0.0747528 0.997202i \(-0.523817\pi\)
0.997202 + 0.0747528i \(0.0238168\pi\)
\(168\) 0 0
\(169\) 0.238064i 0.0183127i
\(170\) −1.29040 + 3.13431i −0.0989692 + 0.240391i
\(171\) 9.10621i 0.696369i
\(172\) −4.66137 1.86087i −0.355426 0.141890i
\(173\) −0.156561 + 0.156561i −0.0119031 + 0.0119031i −0.713033 0.701130i \(-0.752679\pi\)
0.701130 + 0.713033i \(0.252679\pi\)
\(174\) −16.7706 11.0503i −1.27138 0.837721i
\(175\) 0 0
\(176\) 11.5297 + 10.9508i 0.869083 + 0.825447i
\(177\) 18.5840 + 18.5840i 1.39686 + 1.39686i
\(178\) 13.0479 2.68280i 0.977978 0.201084i
\(179\) −20.4045 −1.52511 −0.762553 0.646926i \(-0.776054\pi\)
−0.762553 + 0.646926i \(0.776054\pi\)
\(180\) 17.4092 + 25.5768i 1.29761 + 1.90638i
\(181\) 13.1697 0.978898 0.489449 0.872032i \(-0.337198\pi\)
0.489449 + 0.872032i \(0.337198\pi\)
\(182\) 0 0
\(183\) 3.00010 + 3.00010i 0.221774 + 0.221774i
\(184\) −2.58928 + 14.4722i −0.190884 + 1.06691i
\(185\) 14.0006 + 9.44202i 1.02934 + 0.694191i
\(186\) 9.57699 + 6.31036i 0.702219 + 0.462698i
\(187\) 3.01302 3.01302i 0.220334 0.220334i
\(188\) −5.06960 + 12.6991i −0.369739 + 0.926174i
\(189\) 0 0
\(190\) 1.60111 + 3.84208i 0.116157 + 0.278734i
\(191\) 12.1033i 0.875761i −0.899033 0.437880i \(-0.855729\pi\)
0.899033 0.437880i \(-0.144271\pi\)
\(192\) 22.8872 10.5331i 1.65174 0.760160i
\(193\) 0.496468 0.496468i 0.0357366 0.0357366i −0.689013 0.724749i \(-0.741956\pi\)
0.724749 + 0.689013i \(0.241956\pi\)
\(194\) 9.95235 15.1043i 0.714537 1.08443i
\(195\) −24.6946 + 4.80202i −1.76842 + 0.343880i
\(196\) 0 0
\(197\) −1.16924 1.16924i −0.0833051 0.0833051i 0.664226 0.747531i \(-0.268761\pi\)
−0.747531 + 0.664226i \(0.768761\pi\)
\(198\) −7.83332 38.0975i −0.556690 2.70747i
\(199\) 17.4514 1.23710 0.618548 0.785747i \(-0.287721\pi\)
0.618548 + 0.785747i \(0.287721\pi\)
\(200\) −11.8424 7.73034i −0.837382 0.546618i
\(201\) 17.3682 1.22506
\(202\) 2.92593 + 14.2304i 0.205868 + 1.00124i
\(203\) 0 0
\(204\) −2.66370 6.20365i −0.186497 0.434343i
\(205\) −24.8424 + 4.83076i −1.73507 + 0.337395i
\(206\) −3.25240 + 4.93605i −0.226606 + 0.343911i
\(207\) 25.4282 25.4282i 1.76738 1.76738i
\(208\) 0.367854 + 14.2848i 0.0255061 + 0.990473i
\(209\) 5.23255i 0.361943i
\(210\) 0 0
\(211\) 6.32503i 0.435433i −0.976012 0.217717i \(-0.930139\pi\)
0.976012 0.217717i \(-0.0698608\pi\)
\(212\) −6.20630 + 15.5464i −0.426251 + 1.06773i
\(213\) −7.73473 + 7.73473i −0.529975 + 0.529975i
\(214\) 18.7892 + 12.3803i 1.28440 + 0.846303i
\(215\) −4.65238 3.13758i −0.317290 0.213981i
\(216\) −34.3572 6.14697i −2.33771 0.418248i
\(217\) 0 0
\(218\) −4.13560 + 0.850329i −0.280098 + 0.0575916i
\(219\) 7.60397 0.513829
\(220\) 10.0036 + 14.6968i 0.674441 + 0.990857i
\(221\) 3.82913 0.257575
\(222\) −32.9464 + 6.77417i −2.21121 + 0.454653i
\(223\) 1.13429 + 1.13429i 0.0759578 + 0.0759578i 0.744065 0.668107i \(-0.232895\pi\)
−0.668107 + 0.744065i \(0.732895\pi\)
\(224\) 0 0
\(225\) 12.9629 + 32.0707i 0.864191 + 2.13805i
\(226\) −0.680226 0.448207i −0.0452480 0.0298143i
\(227\) 3.54317 3.54317i 0.235168 0.235168i −0.579678 0.814846i \(-0.696822\pi\)
0.814846 + 0.579678i \(0.196822\pi\)
\(228\) −7.69974 3.07382i −0.509928 0.203569i
\(229\) 10.3185i 0.681863i −0.940088 0.340931i \(-0.889258\pi\)
0.940088 0.340931i \(-0.110742\pi\)
\(230\) −6.25770 + 15.1996i −0.412621 + 1.00223i
\(231\) 0 0
\(232\) −10.4661 + 7.28940i −0.687132 + 0.478572i
\(233\) −9.03323 + 9.03323i −0.591786 + 0.591786i −0.938114 0.346327i \(-0.887429\pi\)
0.346327 + 0.938114i \(0.387429\pi\)
\(234\) 19.2308 29.1859i 1.25716 1.90794i
\(235\) −8.54775 + 12.6746i −0.557594 + 0.826797i
\(236\) 15.3364 6.58509i 0.998314 0.428653i
\(237\) −7.68598 7.68598i −0.499258 0.499258i
\(238\) 0 0
\(239\) 19.1256 1.23713 0.618565 0.785733i \(-0.287714\pi\)
0.618565 + 0.785733i \(0.287714\pi\)
\(240\) 27.5030 6.08684i 1.77531 0.392904i
\(241\) −14.1582 −0.912012 −0.456006 0.889977i \(-0.650720\pi\)
−0.456006 + 0.889977i \(0.650720\pi\)
\(242\) −1.36810 6.65378i −0.0879446 0.427721i
\(243\) 14.1476 + 14.1476i 0.907568 + 0.907568i
\(244\) 2.47583 1.06306i 0.158499 0.0680556i
\(245\) 0 0
\(246\) 27.7350 42.0923i 1.76832 2.68371i
\(247\) 3.32493 3.32493i 0.211560 0.211560i
\(248\) 5.97674 4.16267i 0.379524 0.264330i
\(249\) 37.3120i 2.36455i
\(250\) −11.1082 11.2520i −0.702542 0.711642i
\(251\) 8.70910i 0.549714i −0.961485 0.274857i \(-0.911370\pi\)
0.961485 0.274857i \(-0.0886305\pi\)
\(252\) 0 0
\(253\) 14.6114 14.6114i 0.918611 0.918611i
\(254\) 17.3279 + 11.4175i 1.08725 + 0.716396i
\(255\) −1.44081 7.40944i −0.0902271 0.463997i
\(256\) −0.823500 15.9788i −0.0514687 0.998675i
\(257\) 4.22126 + 4.22126i 0.263315 + 0.263315i 0.826399 0.563084i \(-0.190385\pi\)
−0.563084 + 0.826399i \(0.690385\pi\)
\(258\) 10.9480 2.25105i 0.681596 0.140144i
\(259\) 0 0
\(260\) −2.98220 + 15.6954i −0.184949 + 0.973387i
\(261\) 31.1970 1.93105
\(262\) −13.6584 + 2.80833i −0.843819 + 0.173499i
\(263\) 11.1749 + 11.1749i 0.689073 + 0.689073i 0.962027 0.272954i \(-0.0880006\pi\)
−0.272954 + 0.962027i \(0.588001\pi\)
\(264\) −34.8575 6.23647i −2.14533 0.383828i
\(265\) −10.4643 + 15.5164i −0.642818 + 0.953167i
\(266\) 0 0
\(267\) −20.9758 + 20.9758i −1.28370 + 1.28370i
\(268\) 4.08939 10.2437i 0.249799 0.625731i
\(269\) 7.99592i 0.487520i −0.969836 0.243760i \(-0.921619\pi\)
0.969836 0.243760i \(-0.0783809\pi\)
\(270\) −36.0841 14.8559i −2.19601 0.904099i
\(271\) 30.0591i 1.82596i 0.408004 + 0.912980i \(0.366225\pi\)
−0.408004 + 0.912980i \(0.633775\pi\)
\(272\) −4.28606 + 0.110372i −0.259880 + 0.00669229i
\(273\) 0 0
\(274\) −12.5610 + 19.0633i −0.758835 + 1.15166i
\(275\) 7.44864 + 18.4283i 0.449170 + 1.11127i
\(276\) −12.9174 30.0842i −0.777539 1.81085i
\(277\) −1.74742 1.74742i −0.104992 0.104992i 0.652659 0.757652i \(-0.273653\pi\)
−0.757652 + 0.652659i \(0.773653\pi\)
\(278\) −2.59364 12.6142i −0.155556 0.756552i
\(279\) −17.8153 −1.06657
\(280\) 0 0
\(281\) −2.85110 −0.170082 −0.0850411 0.996377i \(-0.527102\pi\)
−0.0850411 + 0.996377i \(0.527102\pi\)
\(282\) −6.13258 29.8259i −0.365190 1.77611i
\(283\) 6.11827 + 6.11827i 0.363693 + 0.363693i 0.865171 0.501477i \(-0.167210\pi\)
−0.501477 + 0.865171i \(0.667210\pi\)
\(284\) 2.74074 + 6.38307i 0.162633 + 0.378765i
\(285\) −7.68489 5.18271i −0.455214 0.306997i
\(286\) 11.0503 16.7706i 0.653418 0.991667i
\(287\) 0 0
\(288\) −20.6844 + 33.2230i −1.21884 + 1.95768i
\(289\) 15.8511i 0.932417i
\(290\) −13.1626 + 5.48526i −0.772936 + 0.322106i
\(291\) 40.2812i 2.36133i
\(292\) 1.79037 4.48478i 0.104774 0.262452i
\(293\) 16.5266 16.5266i 0.965497 0.965497i −0.0339277 0.999424i \(-0.510802\pi\)
0.999424 + 0.0339277i \(0.0108016\pi\)
\(294\) 0 0
\(295\) 18.3173 3.56191i 1.06647 0.207382i
\(296\) −3.76194 + 21.0266i −0.218658 + 1.22214i
\(297\) 34.6876 + 34.6876i 2.01278 + 2.01278i
\(298\) −2.73477 + 0.562301i −0.158421 + 0.0325732i
\(299\) 18.5691 1.07388
\(300\) 31.4930 0.135178i 1.81825 0.00780451i
\(301\) 0 0
\(302\) −11.9545 + 2.45799i −0.687905 + 0.141442i
\(303\) −22.8768 22.8768i −1.31424 1.31424i
\(304\) −3.62585 + 3.81753i −0.207957 + 0.218950i
\(305\) 2.95705 0.575016i 0.169320 0.0329253i
\(306\) 8.75703 + 5.77008i 0.500606 + 0.329853i
\(307\) −15.0259 + 15.0259i −0.857575 + 0.857575i −0.991052 0.133477i \(-0.957386\pi\)
0.133477 + 0.991052i \(0.457386\pi\)
\(308\) 0 0
\(309\) 13.1638i 0.748863i
\(310\) 7.51662 3.13240i 0.426915 0.177909i
\(311\) 28.1731i 1.59755i −0.601629 0.798776i \(-0.705481\pi\)
0.601629 0.798776i \(-0.294519\pi\)
\(312\) −18.1867 26.1124i −1.02962 1.47832i
\(313\) −18.1503 + 18.1503i −1.02592 + 1.02592i −0.0262603 + 0.999655i \(0.508360\pi\)
−0.999655 + 0.0262603i \(0.991640\pi\)
\(314\) 12.3358 18.7216i 0.696150 1.05652i
\(315\) 0 0
\(316\) −6.34283 + 2.72346i −0.356812 + 0.153207i
\(317\) −18.5985 18.5985i −1.04460 1.04460i −0.998958 0.0456388i \(-0.985468\pi\)
−0.0456388 0.998958i \(-0.514532\pi\)
\(318\) −7.50762 36.5135i −0.421006 2.04757i
\(319\) 17.9262 1.00368
\(320\) 2.88566 17.6543i 0.161313 0.986903i
\(321\) −50.1083 −2.79678
\(322\) 0 0
\(323\) 0.997621 + 0.997621i 0.0555091 + 0.0555091i
\(324\) 33.2778 14.2887i 1.84877 0.793818i
\(325\) −6.97681 + 16.4430i −0.387004 + 0.912094i
\(326\) −5.42019 + 8.22602i −0.300197 + 0.455597i
\(327\) 6.64842 6.64842i 0.367658 0.367658i
\(328\) −18.2955 26.2687i −1.01020 1.45044i
\(329\) 0 0
\(330\) −36.6095 15.0722i −2.01528 0.829695i
\(331\) 17.2022i 0.945519i −0.881192 0.472759i \(-0.843258\pi\)
0.881192 0.472759i \(-0.156742\pi\)
\(332\) −22.0064 8.78520i −1.20776 0.482150i
\(333\) 36.9445 36.9445i 2.02454 2.02454i
\(334\) 19.9082 + 13.1177i 1.08933 + 0.717767i
\(335\) 6.89503 10.2239i 0.376715 0.558592i
\(336\) 0 0
\(337\) −12.9038 12.9038i −0.702913 0.702913i 0.262121 0.965035i \(-0.415578\pi\)
−0.965035 + 0.262121i \(0.915578\pi\)
\(338\) −0.329775 + 0.0678058i −0.0179374 + 0.00368815i
\(339\) 1.81408 0.0985271
\(340\) −4.70929 0.894790i −0.255397 0.0485268i
\(341\) −10.2369 −0.554360
\(342\) 12.6142 2.59364i 0.682100 0.140248i
\(343\) 0 0
\(344\) 1.25009 6.98711i 0.0674002 0.376720i
\(345\) −6.98711 35.9316i −0.376173 1.93449i
\(346\) −0.261466 0.172282i −0.0140565 0.00926196i
\(347\) 13.3538 13.3538i 0.716871 0.716871i −0.251092 0.967963i \(-0.580790\pi\)
0.967963 + 0.251092i \(0.0807897\pi\)
\(348\) 10.5306 26.3786i 0.564501 1.41404i
\(349\) 22.9263i 1.22721i −0.789611 0.613607i \(-0.789718\pi\)
0.789611 0.613607i \(-0.210282\pi\)
\(350\) 0 0
\(351\) 44.0832i 2.35299i
\(352\) −11.8855 + 19.0904i −0.633500 + 1.01752i
\(353\) 21.1578 21.1578i 1.12612 1.12612i 0.135315 0.990803i \(-0.456795\pi\)
0.990803 0.135315i \(-0.0432045\pi\)
\(354\) −20.4501 + 31.0363i −1.08691 + 1.64956i
\(355\) 1.48248 + 7.62373i 0.0786819 + 0.404625i
\(356\) 7.43261 + 17.3102i 0.393928 + 0.917441i
\(357\) 0 0
\(358\) −5.81164 28.2651i −0.307155 1.49385i
\(359\) 8.55036 0.451271 0.225635 0.974212i \(-0.427554\pi\)
0.225635 + 0.974212i \(0.427554\pi\)
\(360\) −30.4714 + 31.4007i −1.60598 + 1.65496i
\(361\) −17.2675 −0.908815
\(362\) 3.75102 + 18.2432i 0.197149 + 0.958840i
\(363\) 10.6967 + 10.6967i 0.561429 + 0.561429i
\(364\) 0 0
\(365\) 3.01871 4.47613i 0.158007 0.234291i
\(366\) −3.30136 + 5.01034i −0.172565 + 0.261895i
\(367\) 3.70939 3.70939i 0.193629 0.193629i −0.603633 0.797262i \(-0.706281\pi\)
0.797262 + 0.603633i \(0.206281\pi\)
\(368\) −20.7849 + 0.535241i −1.08349 + 0.0279014i
\(369\) 78.3009i 4.07618i
\(370\) −9.09176 + 22.0834i −0.472658 + 1.14806i
\(371\) 0 0
\(372\) −6.01360 + 15.0637i −0.311791 + 0.781017i
\(373\) −2.18376 + 2.18376i −0.113071 + 0.113071i −0.761378 0.648308i \(-0.775477\pi\)
0.648308 + 0.761378i \(0.275477\pi\)
\(374\) 5.03191 + 3.31557i 0.260194 + 0.171444i
\(375\) 34.4428 + 7.31315i 1.77862 + 0.377649i
\(376\) −19.0351 3.40564i −0.981661 0.175632i
\(377\) 11.3909 + 11.3909i 0.586661 + 0.586661i
\(378\) 0 0
\(379\) −17.0070 −0.873589 −0.436794 0.899561i \(-0.643886\pi\)
−0.436794 + 0.899561i \(0.643886\pi\)
\(380\) −4.86616 + 3.31222i −0.249629 + 0.169914i
\(381\) −46.2112 −2.36747
\(382\) 16.7659 3.44726i 0.857816 0.176377i
\(383\) −19.2727 19.2727i −0.984790 0.984790i 0.0150963 0.999886i \(-0.495195\pi\)
−0.999886 + 0.0150963i \(0.995195\pi\)
\(384\) 21.1096 + 28.7041i 1.07724 + 1.46480i
\(385\) 0 0
\(386\) 0.829130 + 0.546320i 0.0422016 + 0.0278070i
\(387\) −12.2766 + 12.2766i −0.624055 + 0.624055i
\(388\) 23.7576 + 9.48432i 1.20611 + 0.481493i
\(389\) 12.6470i 0.641228i 0.947210 + 0.320614i \(0.103889\pi\)
−0.947210 + 0.320614i \(0.896111\pi\)
\(390\) −13.6855 32.8401i −0.692991 1.66292i
\(391\) 5.57153i 0.281764i
\(392\) 0 0
\(393\) 21.9573 21.9573i 1.10760 1.10760i
\(394\) 1.28665 1.95270i 0.0648206 0.0983757i
\(395\) −7.57567 + 1.47314i −0.381173 + 0.0741215i
\(396\) 50.5430 21.7020i 2.53988 1.09057i
\(397\) 8.57768 + 8.57768i 0.430501 + 0.430501i 0.888799 0.458297i \(-0.151541\pi\)
−0.458297 + 0.888799i \(0.651541\pi\)
\(398\) 4.97053 + 24.1743i 0.249150 + 1.21175i
\(399\) 0 0
\(400\) 7.33539 18.6062i 0.366769 0.930312i
\(401\) −14.2568 −0.711949 −0.355975 0.934496i \(-0.615851\pi\)
−0.355975 + 0.934496i \(0.615851\pi\)
\(402\) 4.94683 + 24.0590i 0.246725 + 1.19996i
\(403\) −6.50486 6.50486i −0.324030 0.324030i
\(404\) −18.8790 + 8.10621i −0.939267 + 0.403299i
\(405\) 39.7459 7.72884i 1.97499 0.384049i
\(406\) 0 0
\(407\) 21.2288 21.2288i 1.05227 1.05227i
\(408\) 7.83484 5.45679i 0.387882 0.270151i
\(409\) 29.8999i 1.47845i 0.673456 + 0.739227i \(0.264809\pi\)
−0.673456 + 0.739227i \(0.735191\pi\)
\(410\) −13.7674 33.0367i −0.679922 1.63157i
\(411\) 50.8394i 2.50772i
\(412\) −7.76394 3.09945i −0.382502 0.152699i
\(413\) 0 0
\(414\) 42.4666 + 27.9816i 2.08712 + 1.37522i
\(415\) −21.9639 14.8125i −1.07817 0.727119i
\(416\) −19.6830 + 4.57818i −0.965041 + 0.224464i
\(417\) 20.2787 + 20.2787i 0.993054 + 0.993054i
\(418\) 7.24831 1.49034i 0.354527 0.0728950i
\(419\) 37.6505 1.83935 0.919674 0.392684i \(-0.128453\pi\)
0.919674 + 0.392684i \(0.128453\pi\)
\(420\) 0 0
\(421\) −8.37171 −0.408012 −0.204006 0.978970i \(-0.565396\pi\)
−0.204006 + 0.978970i \(0.565396\pi\)
\(422\) 8.76166 1.80150i 0.426511 0.0876958i
\(423\) 33.4454 + 33.4454i 1.62617 + 1.62617i
\(424\) −23.3031 4.16924i −1.13170 0.202476i
\(425\) −4.93361 2.09334i −0.239315 0.101542i
\(426\) −12.9174 8.51141i −0.625852 0.412379i
\(427\) 0 0
\(428\) −11.7981 + 29.5536i −0.570285 + 1.42853i
\(429\) 44.7251i 2.15935i
\(430\) 3.02118 7.33829i 0.145694 0.353884i
\(431\) 4.97943i 0.239851i 0.992783 + 0.119925i \(0.0382656\pi\)
−0.992783 + 0.119925i \(0.961734\pi\)
\(432\) −1.27067 49.3436i −0.0611351 2.37405i
\(433\) −2.70541 + 2.70541i −0.130014 + 0.130014i −0.769119 0.639106i \(-0.779305\pi\)
0.639106 + 0.769119i \(0.279305\pi\)
\(434\) 0 0
\(435\) 17.7555 26.3277i 0.851310 1.26232i
\(436\) −2.35581 5.48659i −0.112823 0.262760i
\(437\) 4.83789 + 4.83789i 0.231428 + 0.231428i
\(438\) 2.16577 + 10.5333i 0.103485 + 0.503300i
\(439\) 37.5353 1.79146 0.895731 0.444597i \(-0.146653\pi\)
0.895731 + 0.444597i \(0.146653\pi\)
\(440\) −17.5093 + 18.0433i −0.834722 + 0.860179i
\(441\) 0 0
\(442\) 1.09062 + 5.30425i 0.0518754 + 0.252297i
\(443\) −8.97407 8.97407i −0.426371 0.426371i 0.461019 0.887390i \(-0.347484\pi\)
−0.887390 + 0.461019i \(0.847484\pi\)
\(444\) −18.7676 43.7090i −0.890673 2.07434i
\(445\) 4.02034 + 20.6748i 0.190582 + 0.980079i
\(446\) −1.24819 + 1.89433i −0.0591035 + 0.0896992i
\(447\) 4.39643 4.39643i 0.207944 0.207944i
\(448\) 0 0
\(449\) 25.1638i 1.18755i −0.804630 0.593777i \(-0.797636\pi\)
0.804630 0.593777i \(-0.202364\pi\)
\(450\) −40.7334 + 27.0911i −1.92019 + 1.27708i
\(451\) 44.9928i 2.11863i
\(452\) 0.427129 1.06993i 0.0200904 0.0503254i
\(453\) 19.2182 19.2182i 0.902948 0.902948i
\(454\) 5.91729 + 3.89895i 0.277712 + 0.182987i
\(455\) 0 0
\(456\) 2.06492 11.5414i 0.0966987 0.540478i
\(457\) 19.2326 + 19.2326i 0.899664 + 0.899664i 0.995406 0.0957418i \(-0.0305223\pi\)
−0.0957418 + 0.995406i \(0.530522\pi\)
\(458\) 14.2935 2.93891i 0.667891 0.137326i
\(459\) −13.2269 −0.617377
\(460\) −22.8374 4.33922i −1.06480 0.202317i
\(461\) 20.0052 0.931737 0.465868 0.884854i \(-0.345742\pi\)
0.465868 + 0.884854i \(0.345742\pi\)
\(462\) 0 0
\(463\) −10.1515 10.1515i −0.471781 0.471781i 0.430710 0.902491i \(-0.358263\pi\)
−0.902491 + 0.430710i \(0.858263\pi\)
\(464\) −13.0785 12.4218i −0.607154 0.576669i
\(465\) −10.1394 + 15.0347i −0.470204 + 0.697216i
\(466\) −15.0860 9.94029i −0.698845 0.460475i
\(467\) 2.92329 2.92329i 0.135274 0.135274i −0.636228 0.771501i \(-0.719506\pi\)
0.771501 + 0.636228i \(0.219506\pi\)
\(468\) 45.9067 + 18.3265i 2.12204 + 0.847141i
\(469\) 0 0
\(470\) −19.9918 8.23066i −0.922154 0.379652i
\(471\) 49.9281i 2.30057i
\(472\) 13.4900 + 19.3689i 0.620929 + 0.891528i
\(473\) −7.05431 + 7.05431i −0.324357 + 0.324357i
\(474\) 8.45776 12.8360i 0.388478 0.589578i
\(475\) −6.10167 + 2.46627i −0.279964 + 0.113160i
\(476\) 0 0
\(477\) 40.9445 + 40.9445i 1.87472 + 1.87472i
\(478\) 5.44737 + 26.4934i 0.249157 + 1.21178i
\(479\) 9.32897 0.426252 0.213126 0.977025i \(-0.431636\pi\)
0.213126 + 0.977025i \(0.431636\pi\)
\(480\) 16.2651 + 36.3644i 0.742399 + 1.65980i
\(481\) 26.9789 1.23013
\(482\) −4.03256 19.6125i −0.183678 0.893324i
\(483\) 0 0
\(484\) 8.82738 3.79027i 0.401245 0.172285i
\(485\) 23.7118 + 15.9913i 1.07670 + 0.726128i
\(486\) −15.5682 + 23.6273i −0.706188 + 1.07175i
\(487\) −20.5026 + 20.5026i −0.929063 + 0.929063i −0.997645 0.0685824i \(-0.978152\pi\)
0.0685824 + 0.997645i \(0.478152\pi\)
\(488\) 2.17776 + 3.12682i 0.0985825 + 0.141544i
\(489\) 21.9378i 0.992060i
\(490\) 0 0
\(491\) 28.1818i 1.27183i 0.771760 + 0.635914i \(0.219377\pi\)
−0.771760 + 0.635914i \(0.780623\pi\)
\(492\) 66.2073 + 26.4307i 2.98485 + 1.19159i
\(493\) −3.41776 + 3.41776i −0.153928 + 0.153928i
\(494\) 5.55282 + 3.65880i 0.249833 + 0.164617i
\(495\) 60.3669 11.7387i 2.71329 0.527616i
\(496\) 7.46858 + 7.09358i 0.335349 + 0.318511i
\(497\) 0 0
\(498\) 51.6859 10.6272i 2.31610 0.476218i
\(499\) 31.0735 1.39104 0.695521 0.718506i \(-0.255174\pi\)
0.695521 + 0.718506i \(0.255174\pi\)
\(500\) 12.4229 18.5923i 0.555569 0.831471i
\(501\) −53.0926 −2.37200
\(502\) 12.0642 2.48054i 0.538450 0.110712i
\(503\) −28.6110 28.6110i −1.27570 1.27570i −0.943049 0.332654i \(-0.892056\pi\)
−0.332654 0.943049i \(-0.607944\pi\)
\(504\) 0 0
\(505\) −22.5485 + 4.38469i −1.00340 + 0.195116i
\(506\) 24.4019 + 16.0786i 1.08480 + 0.714781i
\(507\) 0.530149 0.530149i 0.0235447 0.0235447i
\(508\) −10.8805 + 27.2551i −0.482746 + 1.20925i
\(509\) 12.2524i 0.543076i −0.962428 0.271538i \(-0.912468\pi\)
0.962428 0.271538i \(-0.0875323\pi\)
\(510\) 9.85345 4.10623i 0.436318 0.181827i
\(511\) 0 0
\(512\) 21.8998 5.69184i 0.967845 0.251546i
\(513\) −11.4852 + 11.4852i −0.507084 + 0.507084i
\(514\) −4.64513 + 7.04974i −0.204888 + 0.310951i
\(515\) −7.74896 5.22592i −0.341460 0.230282i
\(516\) 6.23647 + 14.5245i 0.274545 + 0.639404i
\(517\) 19.2182 + 19.2182i 0.845214 + 0.845214i
\(518\) 0 0
\(519\) 0.697297 0.0306080
\(520\) −22.5912 + 0.339323i −0.990690 + 0.0148803i
\(521\) 35.5672 1.55823 0.779115 0.626881i \(-0.215669\pi\)
0.779115 + 0.626881i \(0.215669\pi\)
\(522\) 8.88558 + 43.2152i 0.388911 + 1.89148i
\(523\) 8.12155 + 8.12155i 0.355131 + 0.355131i 0.862014 0.506884i \(-0.169203\pi\)
−0.506884 + 0.862014i \(0.669203\pi\)
\(524\) −7.78040 18.1202i −0.339889 0.791586i
\(525\) 0 0
\(526\) −12.2970 + 18.6627i −0.536175 + 0.813733i
\(527\) 1.95174 1.95174i 0.0850190 0.0850190i
\(528\) −1.28917 50.0621i −0.0561040 2.17867i
\(529\) 4.01871i 0.174727i
\(530\) −24.4744 10.0761i −1.06310 0.437679i
\(531\) 57.7344i 2.50546i
\(532\) 0 0
\(533\) −28.5898 + 28.5898i −1.23836 + 1.23836i
\(534\) −35.0308 23.0821i −1.51593 0.998860i
\(535\) −19.8926 + 29.4966i −0.860032 + 1.27525i
\(536\) 15.3546 + 2.74715i 0.663219 + 0.118659i
\(537\) 45.4391 + 45.4391i 1.96084 + 1.96084i
\(538\) 11.0762 2.27741i 0.477530 0.0981860i
\(539\) 0 0
\(540\) 10.3014 54.2162i 0.443300 2.33309i
\(541\) 12.8511 0.552512 0.276256 0.961084i \(-0.410906\pi\)
0.276256 + 0.961084i \(0.410906\pi\)
\(542\) −41.6389 + 8.56147i −1.78854 + 0.367747i
\(543\) −29.3278 29.3278i −1.25858 1.25858i
\(544\) −1.37365 5.90576i −0.0588948 0.253207i
\(545\) −1.27427 6.55300i −0.0545838 0.280700i
\(546\) 0 0
\(547\) −1.19674 + 1.19674i −0.0511688 + 0.0511688i −0.732228 0.681059i \(-0.761520\pi\)
0.681059 + 0.732228i \(0.261520\pi\)
\(548\) −29.9848 11.9703i −1.28089 0.511344i
\(549\) 9.32034i 0.397782i
\(550\) −23.4060 + 15.5669i −0.998034 + 0.663774i
\(551\) 5.93545i 0.252858i
\(552\) 37.9945 26.4623i 1.61715 1.12631i
\(553\) 0 0
\(554\) 1.92289 2.91829i 0.0816956 0.123986i
\(555\) −10.1515 52.2047i −0.430908 2.21596i
\(556\) 16.7350 7.18561i 0.709721 0.304738i
\(557\) −11.7507 11.7507i −0.497892 0.497892i 0.412889 0.910781i \(-0.364520\pi\)
−0.910781 + 0.412889i \(0.864520\pi\)
\(558\) −5.07418 24.6784i −0.214807 1.04472i
\(559\) −8.96505 −0.379181
\(560\) 0 0
\(561\) −13.4195 −0.566570
\(562\) −0.812053 3.94944i −0.0342544 0.166597i
\(563\) −26.3267 26.3267i −1.10954 1.10954i −0.993211 0.116328i \(-0.962888\pi\)
−0.116328 0.993211i \(-0.537112\pi\)
\(564\) 39.5693 16.9901i 1.66617 0.715413i
\(565\) 0.720173 1.06787i 0.0302979 0.0449256i
\(566\) −6.73263 + 10.2179i −0.282993 + 0.429488i
\(567\) 0 0
\(568\) −8.06143 + 5.61460i −0.338250 + 0.235583i
\(569\) 16.4567i 0.689900i 0.938621 + 0.344950i \(0.112104\pi\)
−0.938621 + 0.344950i \(0.887896\pi\)
\(570\) 4.99045 12.1215i 0.209027 0.507715i
\(571\) 44.7495i 1.87271i −0.351054 0.936355i \(-0.614177\pi\)
0.351054 0.936355i \(-0.385823\pi\)
\(572\) 26.3786 + 10.5306i 1.10295 + 0.440308i
\(573\) −26.9529 + 26.9529i −1.12597 + 1.12597i
\(574\) 0 0
\(575\) −23.9252 10.1515i −0.997749 0.423347i
\(576\) −51.9130 19.1901i −2.16304 0.799588i
\(577\) −9.68360 9.68360i −0.403134 0.403134i 0.476202 0.879336i \(-0.342013\pi\)
−0.879336 + 0.476202i \(0.842013\pi\)
\(578\) 21.9575 4.51473i 0.913312 0.187788i
\(579\) −2.21118 −0.0918936
\(580\) −11.3474 16.6710i −0.471174 0.692226i
\(581\) 0 0
\(582\) −55.7990 + 11.4729i −2.31294 + 0.475569i
\(583\) 23.5272 + 23.5272i 0.974399 + 0.974399i
\(584\) 6.72241 + 1.20273i 0.278175 + 0.0497693i
\(585\) 45.8182 + 30.8999i 1.89435 + 1.27755i
\(586\) 27.6004 + 18.1861i 1.14016 + 0.751263i
\(587\) −24.5126 + 24.5126i −1.01175 + 1.01175i −0.0118150 + 0.999930i \(0.503761\pi\)
−0.999930 + 0.0118150i \(0.996239\pi\)
\(588\) 0 0
\(589\) 3.38948i 0.139661i
\(590\) 10.1512 + 24.3593i 0.417920 + 1.00285i
\(591\) 5.20761i 0.214212i
\(592\) −30.1982 + 0.777648i −1.24114 + 0.0319611i
\(593\) −32.3651 + 32.3651i −1.32908 + 1.32908i −0.422898 + 0.906177i \(0.638987\pi\)
−0.906177 + 0.422898i \(0.861013\pi\)
\(594\) −38.1708 + 57.9303i −1.56617 + 2.37691i
\(595\) 0 0
\(596\) −1.55784 3.62814i −0.0638115 0.148614i
\(597\) −38.8627 38.8627i −1.59055 1.59055i
\(598\) 5.28887 + 25.7226i 0.216278 + 1.05187i
\(599\) −31.2069 −1.27508 −0.637540 0.770417i \(-0.720048\pi\)
−0.637540 + 0.770417i \(0.720048\pi\)
\(600\) 9.15714 + 43.5868i 0.373838 + 1.77942i
\(601\) −3.84939 −0.157020 −0.0785099 0.996913i \(-0.525016\pi\)
−0.0785099 + 0.996913i \(0.525016\pi\)
\(602\) 0 0
\(603\) −26.9786 26.9786i −1.09866 1.09866i
\(604\) −6.80980 15.8597i −0.277087 0.645323i
\(605\) 10.5431 2.05018i 0.428640 0.0833516i
\(606\) 25.1740 38.2056i 1.02262 1.55200i
\(607\) 4.07331 4.07331i 0.165331 0.165331i −0.619593 0.784923i \(-0.712702\pi\)
0.784923 + 0.619593i \(0.212702\pi\)
\(608\) −6.32089 3.93534i −0.256346 0.159599i
\(609\) 0 0
\(610\) 1.63876 + 3.93243i 0.0663515 + 0.159219i
\(611\) 24.4236i 0.988075i
\(612\) −5.49873 + 13.7740i −0.222273 + 0.556780i
\(613\) 14.3977 14.3977i 0.581517 0.581517i −0.353803 0.935320i \(-0.615112\pi\)
0.935320 + 0.353803i \(0.115112\pi\)
\(614\) −25.0941 16.5347i −1.01272 0.667288i
\(615\) 66.0796 + 44.5642i 2.66459 + 1.79700i
\(616\) 0 0
\(617\) −5.54965 5.54965i −0.223420 0.223420i 0.586517 0.809937i \(-0.300499\pi\)
−0.809937 + 0.586517i \(0.800499\pi\)
\(618\) 18.2350 3.74933i 0.733518 0.150820i
\(619\) 5.04224 0.202665 0.101332 0.994853i \(-0.467689\pi\)
0.101332 + 0.994853i \(0.467689\pi\)
\(620\) 6.48001 + 9.52012i 0.260243 + 0.382337i
\(621\) −64.1427 −2.57396
\(622\) 39.0264 8.02430i 1.56482 0.321745i
\(623\) 0 0
\(624\) 30.9919 32.6302i 1.24067 1.30625i
\(625\) 17.9784 17.3717i 0.719137 0.694868i
\(626\) −30.3120 19.9728i −1.21151 0.798275i
\(627\) −11.6524 + 11.6524i −0.465354 + 0.465354i
\(628\) 29.4473 + 11.7557i 1.17508 + 0.469103i
\(629\) 8.09482i 0.322762i
\(630\) 0 0
\(631\) 22.4036i 0.891874i −0.895064 0.445937i \(-0.852870\pi\)
0.895064 0.445937i \(-0.147130\pi\)
\(632\) −5.57921 8.01061i −0.221929 0.318645i
\(633\) −14.0853 + 14.0853i −0.559840 + 0.559840i
\(634\) 20.4661 31.0606i 0.812811 1.23357i
\(635\) −18.3455 + 27.2025i −0.728017 + 1.07950i
\(636\) 48.4414 20.7996i 1.92083 0.824759i
\(637\) 0 0
\(638\) 5.10577 + 24.8321i 0.202139 + 0.983111i
\(639\) 24.0293 0.950584
\(640\) 25.2772 1.03099i 0.999169 0.0407535i
\(641\) −43.1195 −1.70312 −0.851559 0.524258i \(-0.824343\pi\)
−0.851559 + 0.524258i \(0.824343\pi\)
\(642\) −14.2719 69.4119i −0.563268 2.73947i
\(643\) −1.10922 1.10922i −0.0437432 0.0437432i 0.684897 0.728640i \(-0.259847\pi\)
−0.728640 + 0.684897i \(0.759847\pi\)
\(644\) 0 0
\(645\) 3.37334 + 17.3476i 0.132825 + 0.683060i
\(646\) −1.09780 + 1.66608i −0.0431922 + 0.0655512i
\(647\) 23.8413 23.8413i 0.937300 0.937300i −0.0608472 0.998147i \(-0.519380\pi\)
0.998147 + 0.0608472i \(0.0193802\pi\)
\(648\) 29.2715 + 42.0279i 1.14989 + 1.65101i
\(649\) 33.1750i 1.30223i
\(650\) −24.7646 4.98120i −0.971347 0.195379i
\(651\) 0 0
\(652\) −12.9388 5.16530i −0.506721 0.202289i
\(653\) 27.2099 27.2099i 1.06481 1.06481i 0.0670574 0.997749i \(-0.478639\pi\)
0.997749 0.0670574i \(-0.0213611\pi\)
\(654\) 11.1032 + 7.31601i 0.434171 + 0.286079i
\(655\) −4.20846 21.6422i −0.164438 0.845631i
\(656\) 31.1773 32.8255i 1.21727 1.28162i
\(657\) −11.8115 11.8115i −0.460811 0.460811i
\(658\) 0 0
\(659\) 12.4757 0.485985 0.242993 0.970028i \(-0.421871\pi\)
0.242993 + 0.970028i \(0.421871\pi\)
\(660\) 10.4513 55.0056i 0.406818 2.14109i
\(661\) 6.62593 0.257719 0.128859 0.991663i \(-0.458868\pi\)
0.128859 + 0.991663i \(0.458868\pi\)
\(662\) 23.8291 4.89955i 0.926144 0.190427i
\(663\) −8.52714 8.52714i −0.331167 0.331167i
\(664\) 5.90168 32.9862i 0.229030 1.28011i
\(665\) 0 0
\(666\) 61.6993 + 40.6542i 2.39080 + 1.57532i
\(667\) −16.5742 + 16.5742i −0.641754 + 0.641754i
\(668\) −12.5008 + 31.3137i −0.483670 + 1.21156i
\(669\) 5.05194i 0.195319i
\(670\) 16.1264 + 6.63925i 0.623016 + 0.256497i
\(671\) 5.35559i 0.206750i
\(672\) 0 0
\(673\) −27.7823 + 27.7823i −1.07093 + 1.07093i −0.0736433 + 0.997285i \(0.523463\pi\)
−0.997285 + 0.0736433i \(0.976537\pi\)
\(674\) 14.1995 21.5500i 0.546944 0.830076i
\(675\) 24.0998 56.7987i 0.927602 2.18618i
\(676\) −0.187854 0.437504i −0.00722515 0.0168271i
\(677\) −12.4726 12.4726i −0.479363 0.479363i 0.425565 0.904928i \(-0.360075\pi\)
−0.904928 + 0.425565i \(0.860075\pi\)
\(678\) 0.516687 + 2.51292i 0.0198433 + 0.0965082i
\(679\) 0 0
\(680\) −0.101812 6.77833i −0.00390429 0.259937i
\(681\) −15.7806 −0.604716
\(682\) −2.91569 14.1805i −0.111648 0.543001i
\(683\) −3.84838 3.84838i −0.147254 0.147254i 0.629636 0.776890i \(-0.283204\pi\)
−0.776890 + 0.629636i \(0.783204\pi\)
\(684\) 7.18561 + 16.7350i 0.274749 + 0.639878i
\(685\) −29.9269 20.1828i −1.14345 0.771145i
\(686\) 0 0
\(687\) −22.9783 + 22.9783i −0.876677 + 0.876677i
\(688\) 10.0348 0.258412i 0.382575 0.00985185i
\(689\) 29.8999i 1.13909i
\(690\) 47.7836 19.9129i 1.81909 0.758070i
\(691\) 37.0043i 1.40771i −0.710344 0.703854i \(-0.751461\pi\)
0.710344 0.703854i \(-0.248539\pi\)
\(692\) 0.164180 0.411262i 0.00624120 0.0156338i
\(693\) 0 0
\(694\) 22.3016 + 14.6947i 0.846559 + 0.557805i
\(695\) 19.9877 3.88673i 0.758177 0.147432i
\(696\) 39.5399 + 7.07422i 1.49876 + 0.268148i
\(697\) −8.57818 8.57818i −0.324922 0.324922i
\(698\) 31.7583 6.52988i 1.20207 0.247160i
\(699\) 40.2324 1.52173
\(700\) 0 0
\(701\) −29.4765 −1.11331 −0.556656 0.830743i \(-0.687916\pi\)
−0.556656 + 0.830743i \(0.687916\pi\)
\(702\) −61.0656 + 12.5558i −2.30477 + 0.473889i
\(703\) 7.02893 + 7.02893i 0.265101 + 0.265101i
\(704\) −29.8299 11.0269i −1.12426 0.415592i
\(705\) 47.2603 9.19005i 1.77992 0.346117i
\(706\) 35.3348 + 23.2824i 1.32984 + 0.876244i
\(707\) 0 0
\(708\) −48.8172 19.4884i −1.83466 0.732419i
\(709\) 18.1193i 0.680485i −0.940338 0.340243i \(-0.889491\pi\)
0.940338 0.340243i \(-0.110509\pi\)
\(710\) −10.1384 + 4.22498i −0.380488 + 0.158561i
\(711\) 23.8778i 0.895488i
\(712\) −21.8618 + 15.2262i −0.819305 + 0.570628i
\(713\) 9.46481 9.46481i 0.354460 0.354460i
\(714\) 0 0
\(715\) 26.3277 + 17.7555i 0.984602 + 0.664017i
\(716\) 37.4985 16.1010i 1.40138 0.601722i
\(717\) −42.5910 42.5910i −1.59059 1.59059i
\(718\) 2.43532 + 11.8443i 0.0908855 + 0.442024i
\(719\) −9.32897 −0.347912 −0.173956 0.984753i \(-0.555655\pi\)
−0.173956 + 0.984753i \(0.555655\pi\)
\(720\) −52.1763 33.2664i −1.94449 1.23977i
\(721\) 0 0
\(722\) −4.91814 23.9195i −0.183034 0.890193i
\(723\) 31.5292 + 31.5292i 1.17258 + 1.17258i
\(724\) −24.2027 + 10.3921i −0.899487 + 0.386219i
\(725\) −8.44923 20.9038i −0.313796 0.776347i
\(726\) −11.7708 + 17.8640i −0.436854 + 0.662996i
\(727\) −11.9373 + 11.9373i −0.442729 + 0.442729i −0.892928 0.450199i \(-0.851353\pi\)
0.450199 + 0.892928i \(0.351353\pi\)
\(728\) 0 0
\(729\) 8.68729i 0.321751i
\(730\) 7.06028 + 2.90673i 0.261313 + 0.107583i
\(731\) 2.68990i 0.0994896i
\(732\) −7.88080 3.14610i −0.291283 0.116283i
\(733\) −32.0769 + 32.0769i −1.18479 + 1.18479i −0.206296 + 0.978490i \(0.566141\pi\)
−0.978490 + 0.206296i \(0.933859\pi\)
\(734\) 6.19490 + 4.08187i 0.228658 + 0.150665i
\(735\) 0 0
\(736\) −6.66142 28.6396i −0.245543 1.05567i
\(737\) −15.5023 15.5023i −0.571034 0.571034i
\(738\) −108.465 + 22.3018i −3.99266 + 0.820939i
\(739\) 23.9754 0.881951 0.440975 0.897519i \(-0.354633\pi\)
0.440975 + 0.897519i \(0.354633\pi\)
\(740\) −33.1802 6.30441i −1.21973 0.231755i
\(741\) −14.8087 −0.544009
\(742\) 0 0
\(743\) −26.3785 26.3785i −0.967733 0.967733i 0.0317628 0.999495i \(-0.489888\pi\)
−0.999495 + 0.0317628i \(0.989888\pi\)
\(744\) −22.5796 4.03979i −0.827808 0.148106i
\(745\) −0.842643 4.33333i −0.0308720 0.158761i
\(746\) −3.64700 2.40304i −0.133526 0.0879815i
\(747\) −57.9580 + 57.9580i −2.12057 + 2.12057i
\(748\) −3.15964 + 7.91472i −0.115528 + 0.289391i
\(749\) 0 0
\(750\) −0.320402 + 49.7943i −0.0116994 + 1.81823i
\(751\) 52.3306i 1.90957i −0.297293 0.954786i \(-0.596084\pi\)
0.297293 0.954786i \(-0.403916\pi\)
\(752\) −0.703995 27.3381i −0.0256721 0.996918i
\(753\) −19.3944 + 19.3944i −0.706772 + 0.706772i
\(754\) −12.5347 + 19.0234i −0.456487 + 0.692793i
\(755\) −3.68346 18.9424i −0.134055 0.689383i
\(756\) 0 0
\(757\) 23.8139 + 23.8139i 0.865530 + 0.865530i 0.991974 0.126444i \(-0.0403563\pi\)
−0.126444 + 0.991974i \(0.540356\pi\)
\(758\) −4.84394 23.5586i −0.175940 0.855688i
\(759\) −65.0767 −2.36213
\(760\) −5.97420 5.79739i −0.216707 0.210293i
\(761\) 18.8709 0.684069 0.342034 0.939687i \(-0.388884\pi\)
0.342034 + 0.939687i \(0.388884\pi\)
\(762\) −13.1619 64.0134i −0.476807 2.31896i
\(763\) 0 0
\(764\) 9.55054 + 22.2428i 0.345526 + 0.804716i
\(765\) −9.27129 + 13.7474i −0.335204 + 0.497039i
\(766\) 21.2080 32.1865i 0.766275 1.16295i
\(767\) 21.0804 21.0804i 0.761170 0.761170i
\(768\) −33.7495 + 37.4173i −1.21783 + 1.35018i
\(769\) 12.2463i 0.441614i 0.975318 + 0.220807i \(0.0708691\pi\)
−0.975318 + 0.220807i \(0.929131\pi\)
\(770\) 0 0
\(771\) 18.8008i 0.677093i
\(772\) −0.520629 + 1.30414i −0.0187378 + 0.0469371i
\(773\) 3.04379 3.04379i 0.109478 0.109478i −0.650246 0.759724i \(-0.725334\pi\)
0.759724 + 0.650246i \(0.225334\pi\)
\(774\) −20.5026 13.5094i −0.736952 0.485584i
\(775\) 4.82500 + 11.9373i 0.173319 + 0.428799i
\(776\) −6.37133 + 35.6113i −0.228718 + 1.27837i
\(777\) 0 0
\(778\) −17.5191 + 3.60213i −0.628089 + 0.129143i
\(779\) −14.8973 −0.533751
\(780\) 41.5934 28.3112i 1.48928 1.01370i
\(781\) 13.8076 0.494073
\(782\) −7.71787 + 1.58689i −0.275991 + 0.0567470i
\(783\) −39.3473 39.3473i −1.40616 1.40616i
\(784\) 0 0
\(785\) 29.3905 + 19.8210i 1.04899 + 0.707443i
\(786\) 36.6700 + 24.1622i 1.30798 + 0.861836i
\(787\) 2.98794 2.98794i 0.106509 0.106509i −0.651844 0.758353i \(-0.726004\pi\)
0.758353 + 0.651844i \(0.226004\pi\)
\(788\) 3.07142 + 1.22614i 0.109415 + 0.0436796i
\(789\) 49.7711i 1.77190i
\(790\) −4.19835 10.0745i −0.149371 0.358435i
\(791\) 0 0
\(792\) 44.4581 + 63.8327i 1.57975 + 2.26820i
\(793\) 3.40311 3.40311i 0.120848 0.120848i
\(794\) −9.43900 + 14.3252i −0.334978 + 0.508383i
\(795\) 57.8569 11.2506i 2.05197 0.399019i
\(796\) −32.0714 + 13.7707i −1.13674 + 0.488089i
\(797\) 35.3989 + 35.3989i 1.25389 + 1.25389i 0.953960 + 0.299933i \(0.0969644\pi\)
0.299933 + 0.953960i \(0.403036\pi\)
\(798\) 0 0
\(799\) −7.32815 −0.259251
\(800\) 27.8633 + 4.86178i 0.985116 + 0.171890i
\(801\) 65.1650 2.30249
\(802\) −4.06063 19.7490i −0.143386 0.697361i
\(803\) −6.78706 6.78706i −0.239510 0.239510i
\(804\) −31.9185 + 13.7050i −1.12568 + 0.483340i
\(805\) 0 0
\(806\) 7.15804 10.8635i 0.252131 0.382650i
\(807\) −17.8062 + 17.8062i −0.626809 + 0.626809i
\(808\) −16.6062 23.8431i −0.584203 0.838796i
\(809\) 28.9112i 1.01646i −0.861220 0.508232i \(-0.830299\pi\)
0.861220 0.508232i \(-0.169701\pi\)
\(810\) 22.0268 + 52.8561i 0.773941 + 1.85718i
\(811\) 23.9566i 0.841229i −0.907240 0.420614i \(-0.861815\pi\)
0.907240 0.420614i \(-0.138185\pi\)
\(812\) 0 0
\(813\) 66.9390 66.9390i 2.34765 2.34765i
\(814\) 35.4533 + 23.3605i 1.24264 + 0.818783i
\(815\) −12.9138 8.70910i −0.452351 0.305067i
\(816\) 9.79047 + 9.29889i 0.342735 + 0.325526i
\(817\) −2.33571 2.33571i −0.0817161 0.0817161i
\(818\) −41.4184 + 8.51612i −1.44816 + 0.297759i
\(819\) 0 0
\(820\) 41.8423 28.4806i 1.46120 0.994586i
\(821\) 35.6774 1.24515 0.622574 0.782561i \(-0.286087\pi\)
0.622574 + 0.782561i \(0.286087\pi\)
\(822\) 70.4245 14.4801i 2.45634 0.505053i
\(823\) 9.32078 + 9.32078i 0.324902 + 0.324902i 0.850644 0.525742i \(-0.176212\pi\)
−0.525742 + 0.850644i \(0.676212\pi\)
\(824\) 2.08214 11.6377i 0.0725346 0.405418i
\(825\) 24.4507 57.6257i 0.851265 2.00627i
\(826\) 0 0
\(827\) 6.42266 6.42266i 0.223338 0.223338i −0.586565 0.809902i \(-0.699520\pi\)
0.809902 + 0.586565i \(0.199520\pi\)
\(828\) −26.6657 + 66.7960i −0.926697 + 2.32132i
\(829\) 18.7374i 0.650777i −0.945580 0.325388i \(-0.894505\pi\)
0.945580 0.325388i \(-0.105495\pi\)
\(830\) 14.2630 34.6442i 0.495078 1.20252i
\(831\) 7.78271i 0.269979i
\(832\) −11.9480 25.9617i −0.414223 0.900059i
\(833\) 0 0
\(834\) −22.3150 + 33.8666i −0.772706 + 1.17271i
\(835\) −21.0773 + 31.2533i −0.729411 + 1.08157i
\(836\) 4.12895 + 9.61614i 0.142803 + 0.332581i
\(837\) 22.4696 + 22.4696i 0.776662 + 0.776662i
\(838\) 10.7237 + 52.1548i 0.370443 + 1.80166i
\(839\) −50.3921 −1.73973 −0.869864 0.493291i \(-0.835794\pi\)
−0.869864 + 0.493291i \(0.835794\pi\)
\(840\) 0 0
\(841\) 8.66571 0.298818
\(842\) −2.38444 11.5968i −0.0821733 0.399652i
\(843\) 6.34915 + 6.34915i 0.218676 + 0.218676i
\(844\) 4.99101 + 11.6238i 0.171798 + 0.400109i
\(845\) −0.101611 0.522541i −0.00349553 0.0179759i
\(846\) −36.8038 + 55.8557i −1.26534 + 1.92036i
\(847\) 0 0
\(848\) −0.861844 33.4678i −0.0295958 1.14929i
\(849\) 27.2497i 0.935208i
\(850\) 1.49458 7.43044i 0.0512635 0.254862i
\(851\) 39.2553i 1.34565i
\(852\) 8.11115 20.3179i 0.277883 0.696081i
\(853\) −12.0652 + 12.0652i −0.413104 + 0.413104i −0.882818 0.469714i \(-0.844357\pi\)
0.469714 + 0.882818i \(0.344357\pi\)
\(854\) 0 0
\(855\) 3.88673 + 19.9877i 0.132923 + 0.683565i
\(856\) −44.2991 7.92570i −1.51411 0.270895i
\(857\) −14.5411 14.5411i −0.496715 0.496715i 0.413699 0.910414i \(-0.364237\pi\)
−0.910414 + 0.413699i \(0.864237\pi\)
\(858\) −61.9548 + 12.7387i −2.11510 + 0.434891i
\(859\) 43.6765 1.49022 0.745112 0.666939i \(-0.232396\pi\)
0.745112 + 0.666939i \(0.232396\pi\)
\(860\) 11.0258 + 2.09495i 0.375975 + 0.0714372i
\(861\) 0 0
\(862\) −6.89769 + 1.41825i −0.234936 + 0.0483057i
\(863\) −18.0484 18.0484i −0.614373 0.614373i 0.329709 0.944083i \(-0.393049\pi\)
−0.944083 + 0.329709i \(0.893049\pi\)
\(864\) 67.9906 15.8143i 2.31309 0.538013i
\(865\) 0.276821 0.410469i 0.00941220 0.0139564i
\(866\) −4.51818 2.97707i −0.153534 0.101165i
\(867\) −35.2990 + 35.2990i −1.19882 + 1.19882i
\(868\) 0 0
\(869\) 13.7205i 0.465437i
\(870\) 41.5272 + 17.0968i 1.40791 + 0.579637i
\(871\) 19.7013i 0.667553i
\(872\) 6.92923 4.82605i 0.234653 0.163431i
\(873\) 62.5703 62.5703i 2.11768 2.11768i
\(874\) −5.32368 + 8.07955i −0.180076 + 0.273295i
\(875\) 0 0
\(876\) −13.9742 + 6.00021i −0.472145 + 0.202728i
\(877\) 36.5704 + 36.5704i 1.23489 + 1.23489i 0.962062 + 0.272832i \(0.0879603\pi\)
0.272832 + 0.962062i \(0.412040\pi\)
\(878\) 10.6908 + 51.9952i 0.360799 + 1.75475i
\(879\) −73.6068 −2.48270
\(880\) −29.9812 19.1154i −1.01067 0.644378i
\(881\) 29.9298 1.00836 0.504181 0.863598i \(-0.331795\pi\)
0.504181 + 0.863598i \(0.331795\pi\)
\(882\) 0 0
\(883\) 22.0057 + 22.0057i 0.740550 + 0.740550i 0.972684 0.232134i \(-0.0745707\pi\)
−0.232134 + 0.972684i \(0.574571\pi\)
\(884\) −7.03700 + 3.02152i −0.236680 + 0.101625i
\(885\) −48.7231 32.8590i −1.63781 1.10454i
\(886\) 9.87519 14.9872i 0.331763 0.503505i
\(887\) −34.0844 + 34.0844i −1.14444 + 1.14444i −0.156812 + 0.987628i \(0.550122\pi\)
−0.987628 + 0.156812i \(0.949878\pi\)
\(888\) 55.2019 38.4469i 1.85245 1.29019i
\(889\) 0 0
\(890\) −27.4944 + 11.4577i −0.921613 + 0.384064i
\(891\) 71.9850i 2.41159i
\(892\) −2.97960 1.18949i −0.0997645 0.0398271i
\(893\) −6.36321 + 6.36321i −0.212937 + 0.212937i
\(894\) 7.34228 + 4.83789i 0.245563 + 0.161803i
\(895\) 44.7870 8.70910i 1.49706 0.291113i
\(896\) 0 0
\(897\) −41.3518 41.3518i −1.38070 1.38070i
\(898\) 34.8578 7.16719i 1.16322 0.239172i
\(899\) 11.6121 0.387284
\(900\) −49.1292 48.7093i −1.63764 1.62364i
\(901\) −8.97125 −0.298876
\(902\) −62.3256 + 12.8149i −2.07522 + 0.426689i
\(903\) 0 0
\(904\) 1.60376 + 0.286935i 0.0533404 + 0.00954330i
\(905\) −28.9069 + 5.62113i −0.960899 + 0.186853i
\(906\) 32.0954 + 21.1479i 1.06630 + 0.702593i
\(907\) 5.69988 5.69988i 0.189262 0.189262i −0.606115 0.795377i \(-0.707273\pi\)
0.795377 + 0.606115i \(0.207273\pi\)
\(908\) −3.71559 + 9.30734i −0.123306 + 0.308875i
\(909\) 71.0708i 2.35727i
\(910\) 0 0
\(911\) 15.9014i 0.526836i 0.964682 + 0.263418i \(0.0848498\pi\)
−0.964682 + 0.263418i \(0.915150\pi\)
\(912\) 16.5758 0.426849i 0.548878 0.0141344i
\(913\) −33.3035 + 33.3035i −1.10218 + 1.10218i
\(914\) −21.1639 + 32.1196i −0.700038 + 1.06242i
\(915\) −7.86560 5.30458i −0.260029 0.175364i
\(916\) 8.14218 + 18.9628i 0.269025 + 0.626548i
\(917\) 0 0
\(918\) −3.76729 18.3223i −0.124339 0.604727i
\(919\) −45.3593 −1.49626 −0.748132 0.663550i \(-0.769049\pi\)
−0.748132 + 0.663550i \(0.769049\pi\)
\(920\) −0.493728 32.8710i −0.0162777 1.08373i
\(921\) 66.9229 2.20518
\(922\) 5.69792 + 27.7120i 0.187651 + 0.912645i
\(923\) 8.77375 + 8.77375i 0.288792 + 0.288792i
\(924\) 0 0
\(925\) −34.7607 14.7490i −1.14292 0.484946i
\(926\) 11.1709 16.9536i 0.367098 0.557130i
\(927\) −20.4478 + 20.4478i −0.671594 + 0.671594i
\(928\) 13.4821 21.6548i 0.442572 0.710853i
\(929\) 38.5886i 1.26605i −0.774132 0.633025i \(-0.781813\pi\)
0.774132 0.633025i \(-0.218187\pi\)
\(930\) −23.7145 9.76328i −0.777628 0.320150i
\(931\) 0 0
\(932\) 9.47283 23.7289i 0.310293 0.777265i
\(933\) −62.7391 + 62.7391i −2.05399 + 2.05399i
\(934\) 4.88206 + 3.21683i 0.159746 + 0.105258i
\(935\) −5.32741 + 7.89945i −0.174225 + 0.258340i
\(936\) −12.3113 + 68.8114i −0.402407 + 2.24917i
\(937\) −15.2293 15.2293i −0.497519 0.497519i 0.413146 0.910665i \(-0.364430\pi\)
−0.910665 + 0.413146i \(0.864430\pi\)
\(938\) 0 0
\(939\) 80.8383 2.63806
\(940\) 5.70731 30.0377i 0.186152 0.979720i
\(941\) 47.4153 1.54570 0.772848 0.634591i \(-0.218832\pi\)
0.772848 + 0.634591i \(0.218832\pi\)
\(942\) −69.1622 + 14.2206i −2.25343 + 0.463332i
\(943\) −41.5993 41.5993i −1.35466 1.35466i
\(944\) −22.9883 + 24.2035i −0.748205 + 0.787758i
\(945\) 0 0
\(946\) −11.7811 7.76266i −0.383036 0.252386i
\(947\) −24.9331 + 24.9331i −0.810218 + 0.810218i −0.984666 0.174448i \(-0.944186\pi\)
0.174448 + 0.984666i \(0.444186\pi\)
\(948\) 20.1899 + 8.06002i 0.655736 + 0.261777i
\(949\) 8.62542i 0.279993i
\(950\) −5.15426 7.74981i −0.167226 0.251437i
\(951\) 82.8346i 2.68610i
\(952\) 0 0
\(953\) 34.4409 34.4409i 1.11565 1.11565i 0.123279 0.992372i \(-0.460659\pi\)
0.992372 0.123279i \(-0.0393409\pi\)
\(954\) −45.0559 + 68.3796i −1.45874 + 2.21387i
\(955\) 5.16594 + 26.5661i 0.167166 + 0.859658i
\(956\) −35.1481 + 15.0918i −1.13677 + 0.488103i
\(957\) −39.9202 39.9202i −1.29044 1.29044i
\(958\) 2.65709 + 12.9228i 0.0858467 + 0.417518i
\(959\) 0 0
\(960\) −45.7406 + 32.8884i −1.47627 + 1.06147i
\(961\) 24.3688 0.786092
\(962\) 7.68415 + 37.3721i 0.247747 + 1.20492i
\(963\) 77.8351 + 77.8351i 2.50820 + 2.50820i
\(964\) 26.0193 11.1721i 0.838026 0.359829i
\(965\) −0.877821 + 1.30163i −0.0282581 + 0.0419009i
\(966\) 0 0
\(967\) −28.3737 + 28.3737i −0.912437 + 0.912437i −0.996464 0.0840261i \(-0.973222\pi\)
0.0840261 + 0.996464i \(0.473222\pi\)
\(968\) 7.76465 + 11.1485i 0.249565 + 0.358325i
\(969\) 4.44323i 0.142737i
\(970\) −15.3981 + 37.4011i −0.494403 + 1.20088i
\(971\) 7.25895i 0.232951i −0.993194 0.116475i \(-0.962840\pi\)
0.993194 0.116475i \(-0.0371596\pi\)
\(972\) −37.1635 14.8361i −1.19202 0.475867i
\(973\) 0 0
\(974\) −34.2406 22.5614i −1.09714 0.722913i
\(975\) 52.1539 21.0804i 1.67026 0.675113i
\(976\) −3.71111 + 3.90729i −0.118790 + 0.125069i
\(977\) 8.42927 + 8.42927i 0.269676 + 0.269676i 0.828970 0.559293i \(-0.188927\pi\)
−0.559293 + 0.828970i \(0.688927\pi\)
\(978\) 30.3890 6.24834i 0.971732 0.199800i
\(979\) 37.4447 1.19674
\(980\) 0 0
\(981\) −20.6545 −0.659446
\(982\) −39.0385 + 8.02679i −1.24577 + 0.256145i
\(983\) −13.3708 13.3708i −0.426463 0.426463i 0.460959 0.887422i \(-0.347506\pi\)
−0.887422 + 0.460959i \(0.847506\pi\)
\(984\) −17.7555 + 99.2407i −0.566024 + 3.16368i
\(985\) 3.06549 + 2.06738i 0.0976747 + 0.0658721i
\(986\) −5.70785 3.76095i −0.181775 0.119773i
\(987\) 0 0
\(988\) −3.48673 + 8.73406i −0.110928 + 0.277867i
\(989\) 13.0445i 0.414791i
\(990\) 33.4546 + 80.2789i 1.06326 + 2.55143i
\(991\) 22.0788i 0.701356i −0.936496 0.350678i \(-0.885951\pi\)
0.936496 0.350678i \(-0.114049\pi\)
\(992\) −7.69907 + 12.3661i −0.244446 + 0.392625i
\(993\) −38.3078 + 38.3078i −1.21566 + 1.21566i
\(994\) 0 0
\(995\) −38.3050 + 7.44864i −1.21435 + 0.236138i
\(996\) 29.4425 + 68.5702i 0.932920 + 2.17273i
\(997\) −21.1080 21.1080i −0.668497 0.668497i 0.288871 0.957368i \(-0.406720\pi\)
−0.957368 + 0.288871i \(0.906720\pi\)
\(998\) 8.85039 + 43.0441i 0.280154 + 1.36254i
\(999\) −93.1924 −2.94848
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.k.i.687.11 32
4.3 odd 2 inner 980.2.k.i.687.16 yes 32
5.3 odd 4 inner 980.2.k.i.883.16 yes 32
7.2 even 3 980.2.x.j.67.14 64
7.3 odd 6 980.2.x.j.667.2 64
7.4 even 3 980.2.x.j.667.1 64
7.5 odd 6 980.2.x.j.67.13 64
7.6 odd 2 inner 980.2.k.i.687.12 yes 32
20.3 even 4 inner 980.2.k.i.883.11 yes 32
28.3 even 6 980.2.x.j.667.3 64
28.11 odd 6 980.2.x.j.667.4 64
28.19 even 6 980.2.x.j.67.8 64
28.23 odd 6 980.2.x.j.67.7 64
28.27 even 2 inner 980.2.k.i.687.15 yes 32
35.3 even 12 980.2.x.j.863.8 64
35.13 even 4 inner 980.2.k.i.883.15 yes 32
35.18 odd 12 980.2.x.j.863.7 64
35.23 odd 12 980.2.x.j.263.4 64
35.33 even 12 980.2.x.j.263.3 64
140.3 odd 12 980.2.x.j.863.13 64
140.23 even 12 980.2.x.j.263.1 64
140.83 odd 4 inner 980.2.k.i.883.12 yes 32
140.103 odd 12 980.2.x.j.263.2 64
140.123 even 12 980.2.x.j.863.14 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.k.i.687.11 32 1.1 even 1 trivial
980.2.k.i.687.12 yes 32 7.6 odd 2 inner
980.2.k.i.687.15 yes 32 28.27 even 2 inner
980.2.k.i.687.16 yes 32 4.3 odd 2 inner
980.2.k.i.883.11 yes 32 20.3 even 4 inner
980.2.k.i.883.12 yes 32 140.83 odd 4 inner
980.2.k.i.883.15 yes 32 35.13 even 4 inner
980.2.k.i.883.16 yes 32 5.3 odd 4 inner
980.2.x.j.67.7 64 28.23 odd 6
980.2.x.j.67.8 64 28.19 even 6
980.2.x.j.67.13 64 7.5 odd 6
980.2.x.j.67.14 64 7.2 even 3
980.2.x.j.263.1 64 140.23 even 12
980.2.x.j.263.2 64 140.103 odd 12
980.2.x.j.263.3 64 35.33 even 12
980.2.x.j.263.4 64 35.23 odd 12
980.2.x.j.667.1 64 7.4 even 3
980.2.x.j.667.2 64 7.3 odd 6
980.2.x.j.667.3 64 28.3 even 6
980.2.x.j.667.4 64 28.11 odd 6
980.2.x.j.863.7 64 35.18 odd 12
980.2.x.j.863.8 64 35.3 even 12
980.2.x.j.863.13 64 140.3 odd 12
980.2.x.j.863.14 64 140.123 even 12