Defining parameters
Level: | \( N \) | \(=\) | \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 980.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(980))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 192 | 13 | 179 |
Cusp forms | 145 | 13 | 132 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(22\) | \(0\) | \(22\) | \(15\) | \(0\) | \(15\) | \(7\) | \(0\) | \(7\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(27\) | \(0\) | \(27\) | \(19\) | \(0\) | \(19\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(26\) | \(0\) | \(26\) | \(18\) | \(0\) | \(18\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(25\) | \(0\) | \(25\) | \(17\) | \(0\) | \(17\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(26\) | \(4\) | \(22\) | \(22\) | \(4\) | \(18\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(21\) | \(2\) | \(19\) | \(17\) | \(2\) | \(15\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(22\) | \(2\) | \(20\) | \(18\) | \(2\) | \(16\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(23\) | \(5\) | \(18\) | \(19\) | \(5\) | \(14\) | \(4\) | \(0\) | \(4\) | |||
Plus space | \(+\) | \(90\) | \(4\) | \(86\) | \(67\) | \(4\) | \(63\) | \(23\) | \(0\) | \(23\) | |||||
Minus space | \(-\) | \(102\) | \(9\) | \(93\) | \(78\) | \(9\) | \(69\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(980))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(980))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(980)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(490))\)\(^{\oplus 2}\)