# Properties

 Label 980.2.a.i Level $980$ Weight $2$ Character orbit 980.a Self dual yes Analytic conductor $7.825$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [980,2,Mod(1,980)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(980, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("980.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$980 = 2^{2} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 980.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$7.82533939809$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 140) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 3 q^{3} + q^{5} + 6 q^{9}+O(q^{10})$$ q + 3 * q^3 + q^5 + 6 * q^9 $$q + 3 q^{3} + q^{5} + 6 q^{9} - 2 q^{11} + 6 q^{13} + 3 q^{15} - 2 q^{17} - 9 q^{23} + q^{25} + 9 q^{27} + 3 q^{29} - 2 q^{31} - 6 q^{33} + 8 q^{37} + 18 q^{39} - 5 q^{41} + q^{43} + 6 q^{45} - 8 q^{47} - 6 q^{51} + 4 q^{53} - 2 q^{55} + 8 q^{59} - 7 q^{61} + 6 q^{65} - 3 q^{67} - 27 q^{69} + 8 q^{71} - 14 q^{73} + 3 q^{75} + 4 q^{79} + 9 q^{81} + q^{83} - 2 q^{85} + 9 q^{87} - 13 q^{89} - 6 q^{93} + 10 q^{97} - 12 q^{99}+O(q^{100})$$ q + 3 * q^3 + q^5 + 6 * q^9 - 2 * q^11 + 6 * q^13 + 3 * q^15 - 2 * q^17 - 9 * q^23 + q^25 + 9 * q^27 + 3 * q^29 - 2 * q^31 - 6 * q^33 + 8 * q^37 + 18 * q^39 - 5 * q^41 + q^43 + 6 * q^45 - 8 * q^47 - 6 * q^51 + 4 * q^53 - 2 * q^55 + 8 * q^59 - 7 * q^61 + 6 * q^65 - 3 * q^67 - 27 * q^69 + 8 * q^71 - 14 * q^73 + 3 * q^75 + 4 * q^79 + 9 * q^81 + q^83 - 2 * q^85 + 9 * q^87 - 13 * q^89 - 6 * q^93 + 10 * q^97 - 12 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 3.00000 0 1.00000 0 0 0 6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.2.a.i 1
3.b odd 2 1 8820.2.a.k 1
4.b odd 2 1 3920.2.a.d 1
5.b even 2 1 4900.2.a.a 1
5.c odd 4 2 4900.2.e.b 2
7.b odd 2 1 980.2.a.a 1
7.c even 3 2 980.2.i.a 2
7.d odd 6 2 140.2.i.b 2
21.c even 2 1 8820.2.a.w 1
21.g even 6 2 1260.2.s.b 2
28.d even 2 1 3920.2.a.bi 1
28.f even 6 2 560.2.q.a 2
35.c odd 2 1 4900.2.a.v 1
35.f even 4 2 4900.2.e.c 2
35.i odd 6 2 700.2.i.a 2
35.k even 12 4 700.2.r.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.i.b 2 7.d odd 6 2
560.2.q.a 2 28.f even 6 2
700.2.i.a 2 35.i odd 6 2
700.2.r.c 4 35.k even 12 4
980.2.a.a 1 7.b odd 2 1
980.2.a.i 1 1.a even 1 1 trivial
980.2.i.a 2 7.c even 3 2
1260.2.s.b 2 21.g even 6 2
3920.2.a.d 1 4.b odd 2 1
3920.2.a.bi 1 28.d even 2 1
4900.2.a.a 1 5.b even 2 1
4900.2.a.v 1 35.c odd 2 1
4900.2.e.b 2 5.c odd 4 2
4900.2.e.c 2 35.f even 4 2
8820.2.a.k 1 3.b odd 2 1
8820.2.a.w 1 21.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(980))$$:

 $$T_{3} - 3$$ T3 - 3 $$T_{11} + 2$$ T11 + 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 3$$
$5$ $$T - 1$$
$7$ $$T$$
$11$ $$T + 2$$
$13$ $$T - 6$$
$17$ $$T + 2$$
$19$ $$T$$
$23$ $$T + 9$$
$29$ $$T - 3$$
$31$ $$T + 2$$
$37$ $$T - 8$$
$41$ $$T + 5$$
$43$ $$T - 1$$
$47$ $$T + 8$$
$53$ $$T - 4$$
$59$ $$T - 8$$
$61$ $$T + 7$$
$67$ $$T + 3$$
$71$ $$T - 8$$
$73$ $$T + 14$$
$79$ $$T - 4$$
$83$ $$T - 1$$
$89$ $$T + 13$$
$97$ $$T - 10$$